We developed a severe acute respiratory syndrome (SARS) subunit recombinant protein vaccine candidate based on a high-yielding, yeast- engineered, receptor-binding domain (RBD219-N1) of the SARS beta-coronavirus (SARS-CoV) spike (S) protein. When formulated with Alhydrogel®, RBD219-N1 induced high-level neutralizing antibodies against both pseudotyped virus and a clinical (mouse-adapted) isolate of SARS-CoV. Here, we report that mice immunized with RBD219-N1/Alhydrogel® were fully protected from lethal SARS-CoV challenge (0% mortality), compared to ~ 30% mortality in mice when immunized with the SARS S protein formulated with Alhydrogel®, and 100% mortality in negative controls. An RBD219-N1 formulation Alhydrogel® was also superior to the S protein, unadjuvanted RBD, and AddaVax (MF59-like adjuvant)-formulated RBD in inducing specific antibodies and preventing cellular infiltrates in the lungs upon SARS-CoV challenge. Specifically, a formulation with a 1:25 ratio of RBD219-N1 to Alhydrogel® provided high neutralizing antibody titers, 100% protection with non-detectable viral loads with minimal or no eosinophilic pulmonary infiltrates. As a result, this vaccine formulation is under consideration for further development against SARS-CoV and potentially other emerging and re-emerging beta-CoVs such as SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263514 | PMC |
http://dx.doi.org/10.1101/2020.05.15.098079 | DOI Listing |
Int J Mol Sci
January 2025
State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
The recent coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has exerted considerable impact on global health. To prepare for rapidly mutating viruses and for the forthcoming pandemic, effective therapies targeting the critical stages of the viral life cycle need to be developed. Viruses are dependent on the interaction between the receptor-binding domain (RBD) of the viral Spike (S) protein (S-RBD) and the angiotensin-converting enzyme 2 (ACE2) receptor to efficiently establish infection and the following replicate.
View Article and Find Full Text PDFBiomolecules
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
Nanobodies have gained attention as potential therapeutic and diagnostic agents for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to their ability to bind and neutralize the virus. However, rapid, scalable, and robust production of nanobodies for SARS-CoV-2 remains a crucial challenge. In this study, we developed a visual and high-efficiency biomanufacturing method for nanobodies with by fusing the super-folder green fluorescent protein (sfGFP) to the N-terminus or C-terminus of the nanobody.
View Article and Find Full Text PDFCell
January 2025
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA. Electronic address:
Nanoparticle vaccines displaying combinations of SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) could protect against SARS-CoV-2 variants and spillover of zoonotic sarbecoviruses into humans. Using a computational approach, we designed variants of SARS-CoV-2 RBDs and selected 7 natural sarbecovirus RBDs, each predicted to fold properly and abrogate antibody responses to variable epitopes. RBDs were attached to 60-mer nanoparticles to make immunogens displaying two (mosaic-2s), five (mosaic-5), or seven (mosaic-7) different RBDs for comparisons with mosaic-8b, which elicited cross-reactive antibodies and protected animals from sarbecovirus challenges.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.
Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD).
View Article and Find Full Text PDFVaccines (Basel)
January 2025
State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia.
Although mRNA vaccines encapsulated in lipid nanoparticles (LNPs) have demonstrated a safety profile with minimal serious adverse events in clinical trials, there is opportunity to further reduce mRNA reactogenicity. The development of naked mRNA vaccines could improve vaccine tolerability. Naked nucleic acid delivery using the jet injection method may be a solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!