SARS-CoV-2 is a newly emerged coronavirus responsible for the current COVID-19 pandemic that has resulted in more than one million infections and 73,000 deaths . Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe multiple monoclonal antibodies targeting SARS-CoV-2 S identified from memory B cells of a SARS survivor infected in 2003. One antibody, named S309, potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 by engaging the S receptor-binding domain. Using cryo-electron microscopy and binding assays, we show that S309 recognizes a glycan-containing epitope that is conserved within the sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails including S309 along with other antibodies identified here further enhanced SARS-CoV-2 neutralization and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and S309-containing antibody cocktails for prophylaxis in individuals at high risk of exposure or as a post-exposure therapy to limit or treat severe disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7255795PMC
http://dx.doi.org/10.1101/2020.04.07.023903DOI Listing

Publication Analysis

Top Keywords

antibody cocktails
8
sars-cov-2
6
structural functional
4
functional analysis
4
analysis potent
4
potent sarbecovirus
4
sarbecovirus neutralizing
4
antibody
4
neutralizing antibody
4
antibody sars-cov-2
4

Similar Publications

While total RNA concentrations putatively represent ribosome content, there is a need to homologize various quantification approaches. Thus, total RNA concentrations ([RNA]) provided through UV-Vis spectroscopy (UV), fluorometry-only (Fluor), and fluorometry-based microfluidic chip electrophoresis (MFGE) were examined in C2C12 myotubes and mouse skeletal muscle to determine if values aligned with [18S + 28S rRNA] (i.e.

View Article and Find Full Text PDF

The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit.

View Article and Find Full Text PDF

Newcastle Disease Virus-Vectored African Swine Fever Virus Antigen Cocktail Delays the Onset of ASFV-SY18 but Is Not Protective.

Microorganisms

December 2024

Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.

African Swine Fever (ASF) is a highly contagious viral disease threatening the global pig industry. Currently, only two gene-deleted live attenuated vaccines are approved, exclusively in Vietnam, and their long-term effectiveness and safety are unproven, prompting the need for safer alternatives. This study assessed a cocktail of African Swine Fever Virus (ASFV) antigens delivered via a recombinant Newcastle Disease Virus (rNDV) vector against the genotype II ASFV-SY18.

View Article and Find Full Text PDF

Background: In humans, the presence of an even distribution of melanocytes within the epidermal basal layer allows for uniform pigmentation in healthy and young individuals. Moreover, despite high variability in skin colours and tones, interindividual melanocyte density variability is low. However, dogs display a high intraindividual pigmentary variability in different anatomical areas.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants of concern (VOCs) has greatly diminished the neutralizing activity of previously FDA-approved monoclonal antibodies (mAbs), including that of antibody cocktails and of first-generation broadly neutralizing antibodies such as S309 (Sotrovimab). In contrast, antibodies targeting cryptic conformational epitopes of the receptor binding domain (RBD) have demonstrated broad activity against emerging variants, but exert only moderate neutralizing activity, which has so far hindered clinical development. Here, we utilize in vitro display technology to identify and affinity-mature antibodies targeting the cryptic class 6 epitope, accessible only in the "up" conformation of the SARS-CoV-2 spike trimer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!