The autophagy-endolysosomal pathway is an evolutionally conserved degradation system that is tightly linked to a wide variety of physiological processes. Dysfunction of this system is associated with many pathological conditions such as cancer, inflammation and neurodegenerative diseases. Therefore, monitoring the cellular autophagy-endolysosomal activity is crucial for studies on the pathogenesis as well as therapeutics of such disorders. To this end, we here sought to create a novel means exploiting Keima, an acid-stable fluorescent protein possessing pH-dependent fluorescence excitation spectra, for precisely monitoring the autophagy-endolysosomal system. First, we generated three lines of transgenic (tg) mouse expressing monomeric Keima-fused MAP1LC3B (mKeima-LC3B). Then, these tg mice were subjected to starvation by food-restriction, and also challenged to neurodegeneration by genetically crossing with a mouse model of amyotrophic lateral sclerosis; i.e., SOD1H46R transgenic mouse. Unexpectedly, despite that a lipidated-form of endogenous LC3 (LC3-II) was significantly increased, those of mKeima-LC3B (mKeima-LC3B-II) were not changed under both stressed conditions. It was also noted that mKeima-LC3B-positive aggregates were progressively accumulated in the spinal cord of SOD1H46R;mKeima-LC3B double-tg mice, suggestive of acid-resistance and aggregate-prone natures of long-term overexpressed mKeima-LC3B in vivo. Next, we characterized mouse embryonic fibroblasts (MEFs) derived from mKeima-LC3B-tg mice. In contrast with in vivo, levels of mKeima-LC3B-I were decreased under starved conditions. Furthermore, when starved MEFs were treated with chloroquine (CQ), the abundance of mKeima-LC3B-II was significantly increased. Remarkably, when cultured medium was repeatedly changed between DMEM (nutrient-rich) and EBSS (starvation), acidic/neutral signal ratios of mKeima-LC3B-positive compartments were rapidly and reversibly shifted, which were suppressed by the CQ treatment, indicating that intraluminal pH of mKeima-LC3B-positive vesicles was changeable upon nutritional conditions of culture media. Taken together, although mKeima-LC3B-tg mice may not be an appropriate tool to monitor the autophagy-endolysosomal system in vivo, mKeima-LC3B must be one of the most sensitive reporter molecules for monitoring this system under in vitro cultured conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279612PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234180PLOS

Publication Analysis

Top Keywords

autophagy-endolysosomal system
12
monitoring autophagy-endolysosomal
8
monomeric keima-fused
8
keima-fused map1lc3b
8
transgenic mouse
8
mkeima-lc3b-tg mice
8
system
6
conditions
5
monitoring
4
system monomeric
4

Similar Publications

Cerebral ischemia is a serious disease that triggers sequential pathological mechanisms, leading to significant morbidity and mortality. Although most studies to date have typically focused on the lysosome, a single organelle, current evidence supports that the function of lysosomes cannot be separated from that of the endolysosomal system as a whole. The associated membrane fusion functions of this system play a crucial role in the biodegradation of cerebral ischemia-related products.

View Article and Find Full Text PDF

SQSTM1, a protective factor of SOD1-linked motor neuron disease, regulates the accumulation and distribution of ubiquitinated protein aggregates in neuron.

Neurochem Int

September 2022

Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan; The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan; Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, Isehara, Kanagawa, 259-1193, Japan. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective loss of motor neurons in the brain and spinal cord. Recent studies have shown that mutations in SQSTM1 are linked to ALS. It has also been demonstrated that a systemic loss of SQSTM1 exacerbates disease phenotypes in an ALS mouse model.

View Article and Find Full Text PDF

Background: Disturbances in the autophagy/endolysosomal systems are proposed as early signatures of Alzheimer's disease (AD). However, few studies are available concerning autophagy gene expression in AD patients.

Objective: To explore the differential expression of classical genes involved in the autophagy pathway, among them a less characterized one, DEF8 (Differentially expressed in FDCP 8), initially considered a Rubicon family member, in peripheralblood mononuclear cells (PBMCs) from individuals with mild cognitive impairment (MCI) and probable AD (pAD) and correlate the results with the expression of DEF8 in the brain of 5xFAD mice.

View Article and Find Full Text PDF

Monitoring the autophagy-endolysosomal system using monomeric Keima-fused MAP1LC3B.

PLoS One

August 2020

Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan.

The autophagy-endolysosomal pathway is an evolutionally conserved degradation system that is tightly linked to a wide variety of physiological processes. Dysfunction of this system is associated with many pathological conditions such as cancer, inflammation and neurodegenerative diseases. Therefore, monitoring the cellular autophagy-endolysosomal activity is crucial for studies on the pathogenesis as well as therapeutics of such disorders.

View Article and Find Full Text PDF

We recently identified an interaction between Atg12-Atg3, a complex between 2 core autophagy regulators, and the ESCRT-associated protein Pdcd6ip (programmed cell death 6 interacting protein, commonly known as Alix), which coordinately regulates basal autophagy, late endosome-to-lysosome trafficking, and exosome release. Because these processes all serve fundamental roles in cancer progression and therapy, Atg12-Atg3 may be an attractive anticancer target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!