Nonbonded Atomic Contacts Drive Ultrafast Helix Motions in Myoglobin.

J Phys Chem B

Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

Published: July 2020

The association and dissociation of small ligands regulate the functions of proteins through structural changes in the protein. Such structural changes propagate long distances, and this allostery plays a key role in molecular functions. However, the mechanism by which structural changes are transmitted is poorly understood. Here we show that nonbonded atomic contacts play an essential role in driving the displacement of a helix in picosecond time scale primary structural changes following the dissociation of carbon monoxide from the heme group in myoglobin. The present time-resolved ultraviolet resonance Raman study revealed that the amplitude of this helix displacement was reduced upon substitution of Val68, which contacts the heme in wild-type myoglobin, with a less bulky side chain (Ala). Our findings provided the first direct evidence that structural changes are transmitted not only by covalent bonds, salt bridges and hydrogen bonds but also by nonbonded atomic contacts in the primary protein response upon ligand dissociation. Furthermore, the present results indicate the importance of dense atomic packing in a protein structure for responding to the association and dissociation of small molecules. The high compactness of protein structures makes possible the propagation of structural changes, providing useful clues to the design of molecular machines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c04772DOI Listing

Publication Analysis

Top Keywords

structural changes
24
nonbonded atomic
12
atomic contacts
12
association dissociation
8
dissociation small
8
changes transmitted
8
structural
6
changes
6
contacts
4
contacts drive
4

Similar Publications

Influence of lung function on macro- and micro-structural brain changes in mid- and late-life.

Int J Surg

January 2025

Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Introduction: Lung function has been associated with cognitive decline and dementia, but the extent to which lung function impacts brain structural changes remains unclear. We aimed to investigate the association of lung function with structural macro- and micro-brain changes across mid- and late-life.

Methods: The study included a total of 37 164 neurologic disorder-free participants aged 40-70 years from the UK Biobank, who underwent brain MRI scans 9 years after baseline.

View Article and Find Full Text PDF

Along with the rapid development of the digital economy and artificial intelligence, heat sinks available for immersion phase-change liquid cooling (IPCLC) of chips are facing huge challenges. Here, we design a high-performance IPCLC heat sink based on a copper microgroove/nanocone (MGNC) composite structure. Maximal heat fluxes () of the MGNC structure, microgroove structure, and flat copper reach 112.

View Article and Find Full Text PDF

Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.

View Article and Find Full Text PDF

New and Emerging Biological Therapies for Myasthenia Gravis: A Focussed Review for Clinical Decision-Making.

BioDrugs

January 2025

Department of Neurology, Neuroscience Clinical Research Center (NCRC) and Integrated Myasthenia Gravis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Charitéplatz 1, Germany.

Myasthenia gravis (MG) is a rare autoimmune disease characterised by exertion-induced muscle weakness that can lead to potentially life-threatening myasthenic crises. Detectable antibodies are directed against specific postsynaptic structures of the neuromuscular junction. MG is a chronic condition that can be improved through therapies, but to date, not cured.

View Article and Find Full Text PDF

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!