As genome-wide association studies shed light on the heterogeneous genetic underpinnings of many neurological diseases, the need to study the contribution of specific genes to brain development and function increases. Relying on mouse models to study the role of specific genetic manipulations is not always feasible since transgenic mouse lines are quite costly and many novel disease-associated genes do not yet have commercially available genetic lines. Additionally, it can take years of development and validation to create a mouse line. In utero electroporation offers a relatively quick and easy method to manipulate gene expression in a cell-type specific manner in vivo that only requires developing a DNA plasmid to achieve a particular genetic manipulation. Bilateral in utero electroporation can be used to target large populations of frontal cortex pyramidal neurons. Combining this gene transfer method with behavioral approaches allows one to study the effects of genetic manipulations on the function of prefrontal cortex networks and the social behavior of juvenile and adult mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/61350 | DOI Listing |
Methods Mol Biol
January 2025
Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
StarTrack is a powerful multicolor genetic tool designed to unravel cellular lineages arising from neural progenitor cells (NPCs). This innovative technique, based on retrospective clonal analysis and built upon the PiggyBac system, creates a unique and inheritable "color code" within NPCs. Through the stochastic integration of 12 distinct plasmids encoding six fluorescent proteins, StarTrack enables precise and comprehensive tracking of cellular fates and progenitor potentials.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute for Neuroscience of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France.
Multicolor MAGIC Markers strategies are useful lineage tracing tools to study brain development at a multicellular scale. In this chapter, we describe an in utero electroporation method to simultaneously label multiple neighboring progenitors and their respective progeny using these multicolor reporters. In utero electroporation enables the introduction of any gene of interest into embryonic neural progenitors lining the brain ventricles through a simple pipeline consisting of a micro-injection followed by the application of electrical pulses.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Neural precursor cells (NPCs) are a group of cells with self-renewal and multi-differentiation potential. MicroRNAs are required for neurogenesis in the central nervous system (CNS). Recent reports suggest that miR-1224 is important in human CNS diseases.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan.
Growth-associated protein 43 (GAP43) is a membrane-associated phosphoprotein predominantly expressed in the nervous systems, and controls axonal growth, branching, and pathfinding. While the association between GAP43 and human neurological disorders have been reported, the underlying mechanisms remain largely unknown. We performed whole exome sequencing on a patient with intellectual disability (ID), neurodevelopmental disorders, short stature, and skeletal abnormalities such as left-right difference in legs and digital deformities, and identified a heterozygous missense variation in the GAP43 gene [NM_001130064.
View Article and Find Full Text PDFCells
December 2024
Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan.
encodes a small GTPase of the Rho family that plays a critical role in actin cytoskeleton remodeling and intracellular signaling regulation. Pathogenic variants in , all of which reported thus far affect conserved residues within its functional domains, have been linked to neurodevelopmental disorders characterized by diverse phenotypic features, including structural brain anomalies and facial dysmorphism (NEDBAF). Recently, a novel de novo variant (NM_005052.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!