The electrochemical oxidation of the antibiotic Norfloxacin (NOR) in chloride media on different anodic materials was studied at two different electrochemical reactors. The results were compared with those obtained in sulphate media. The anodes under study were a commercial boron-doped diamond (BBD) and two different ceramic electrodes based on tin oxide doped with antimony oxide in the presence (CuO) and absence (BCE) of copper oxide as sintering aid. The reactors employed were a one-compartment reactor (OCR) and a two-compartment one with a membrane separating both electrodes (EMR). The use of the membrane clearly enhanced both NOR degradation and TOC mineralization for all the anodic materials studied since some parallel reactions were avoided. Additionally, two different pathways for NOR oxidation were observed as a function of the reactor employed. The EMR also favoured the ionic by-products generation and the electrolyte dechlorination. NO increased with the oxidation power of the anode employed and it was also enhanced by the EMR use. Chloride media favours ceramic electrodes performance independently of the reactor employed as they did not generate an excess of oxidants as BDD did. The BCE electrode is an interesting alternative to BDD since although its oxidative power was lower, it presented similar current efficiency with lower energy consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110710DOI Listing

Publication Analysis

Top Keywords

ceramic electrodes
12
chloride media
8
anodic materials
8
materials studied
8
reactor employed
8
comparison electrochemical
4
reactor
4
electrochemical reactor
4
reactor membrane
4
oxidation
4

Similar Publications

All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.

View Article and Find Full Text PDF

Growth of lithium whiskers or dendrites is the major obstacle towards safe and stable utilization of lithium metal anodes in rechargeable batteries. In this study, we look deeper into the mechanism of lithium electrodeposition. We find that before lithium whisker or dendrite nucleation occurs, lithium is deposited into the grain boundaries of the metal electrode, which we directly observed in the focused ion beam cross-sections of the lithium electrode.

View Article and Find Full Text PDF

Roll-to-Roll Flash Joule Heating to Stabilize Electrocatalysts onto Meter-Scale Ni Foam for Advanced Water Splitting.

ACS Nano

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

The seamless integration of electrocatalysts onto the electrode is crucial for enhancing water electrolyzers, yet it is especially challenging when scaled up to large manufacturing. Despite thorough investigation, there are few reports that tackle this integration through roll-to-roll (R2R) methodology, a technique crucial for fulfilling industrial-scale demands. Here, we develop an R2R flash Joule heating (R2R-FJH) system to process catalytic electrodes with superior performance.

View Article and Find Full Text PDF

Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to <450°C will enable a wider material choice and reduce system costs.

View Article and Find Full Text PDF

The Coronavirus Disease 2019 (COVID-19) recently emerged as a life-threatening global pandemic that has ravaged millions of lives. The affected patients are known to frequently register numerous comorbidities induced by COVID-19 such as diabetes, asthma, cardiac arrest, hypertension, and neurodegenerative diseases, to name a few. The expensiveness and probability of false negative results of conventional screening tests often delay timely diagnosis and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!