Selection of a metal ligand modified DNAzyme for detecting Ni.

Biosens Bioelectron

Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. Electronic address:

Published: October 2020

Nickel is a highly important metal, and the detection of Ni using biosensors is a long-stand analytical challenge. DNA has been widely used for metal detection, although no DNA-based sensors were reported for Ni. DNAzymes are DNA-based catalysts, and they recruit metal ions for catalysis. In this work, in vitro selection of RNA-cleaving DNAzymes was carried out using a library containing a region of 50 random nucleotides in the presence of Ni. To increase Ni binding, a glycyl-histidine-functionalized tertiary amine moiety was inserted at the cleavage junction. A representative DNAzyme named Ni03 showed a high cleavage yield with Ni and it was further studied. After truncation, the optimal sequence of Ni03l could bind one Ni or two Co for catalysis, while other metal ions were inactive. Its cleavage rates for 100 μM Ni reached 0.63 h at pH 8.0. A catalytic beacon biosensor was designed by labeling a fluorophore and a quencher on the Ni03l DNAzyme. Fluorescence enhancement was observed in the presence of Ni with a detection limit of 12.9 μM. The sensor was also tested in spiked Lake Ontario water achieving a similar sensitivity. This is another example of using single-site modified DNAzyme for sensing transition metal ions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2020.112285DOI Listing

Publication Analysis

Top Keywords

metal ions
12
modified dnazyme
8
metal detection
8
metal
5
selection metal
4
metal ligand
4
ligand modified
4
dnazyme
4
dnazyme detecting
4
detecting nickel
4

Similar Publications

Limestone mining waste and its derived CaO were checked as an adsorbents of pb, Cu, and Cd ions from water solution. The characterization of Limestone and calcined limestone was studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Scanning Electron Microscope (SEM), and Surface area measurements (BET). The optimum conditions of sorbent dosage, pH, initial concentration, and contact time factors were investigated for pristine limestone and calcined limestone absorbents.

View Article and Find Full Text PDF

Synthesis of zirconium-based metal-organic framework/gelatin aerogel for removing phosphate and fluoride from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.

View Article and Find Full Text PDF

Interfacial adsorption behavior of amine-functionalized MCM-41 for Mo(VI) capture from aqueous solution.

Environ Res

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China.

Given the environmental and ecological risks posed by wastewater bearing Mo, the characteristics and microscopic interactions of existing silica-based adsorbents have not been thoroughly investigated, highlighting the need to enhance the porosity and chemical interactions of these materials. Considering the effectiveness of amino groups in binding metal oxyanions, this study investigates the adsorption performance and mechanism of amino-functionalized MCM-41 for Mo(VI), with the goal of efficiently remediating Mo-contaminated wastewater. MCM-41 modified by amino group retains its original structure and mesoporous characteristics while featuring a positively charged surface and chemically bonded amino groups.

View Article and Find Full Text PDF

Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).

View Article and Find Full Text PDF

Mechanism of nonhydrated phospholipid removal in soybean oil using aminopolycarboxylic acid ligands.

Food Chem

January 2025

Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China. Electronic address:

Herein, nonhydrated phospholipids (NHPs) were removed from soybean oil using three silica adsorbents modified using aminopolycarboxylic acid ligands. The removal rate of NHPs was 62.98 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!