Mass spectrometry-based proteomics technologies are prime methods for the high-throughput identification of proteins in complex biological samples. Nevertheless, there are still technical limitations that hinder the ability of mass spectrometry to identify low abundance proteins in complex samples. Characterizing such proteins is essential to provide a comprehensive understanding of the biological processes taking place in cells and tissues. Still today, most mass spectrometry-based proteomics approaches use a data-dependent acquisition strategy, which favors the collection of mass spectra from proteins of higher abundance. Since the computational identification of proteins from proteomics data is typically performed after mass spectrometry analysis, large numbers of mass spectra are typically redundantly acquired from the same abundant proteins, and little to no mass spectra are acquired for proteins of lower abundance. We therefore propose a novel supervised learning algorithm, MealTime-MS, that identifies proteins in real-time as mass spectrometry data are acquired and prevents further data collection from confidently identified proteins to ultimately free mass spectrometry resources to improve the identification sensitivity of low abundance proteins. We use real-time simulations of a previously performed mass spectrometry analysis of a HEK293 cell lysate to show that our approach can identify 92.1% of the proteins detected in the experiment using 66.2% of the MS2 spectra. We also demonstrate that our approach outperforms a previously proposed method, is sufficiently fast for real-time mass spectrometry analysis, and is flexible. Finally, MealTime-MS' efficient usage of mass spectrometry resources will provide a more comprehensive characterization of proteomes in complex samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.0c00064 | DOI Listing |
Phytochem Anal
March 2025
Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.
Introduction: Pine needles are a rich source of bioactive compounds, and there are few reports on the extraction and identification of active substances in various types of pine needles.
Objectives: The objective of this study is to enhance the efficiency and yield of pine needle essential oil extraction by employing an innovative ultrasonic-assisted salt-out hydrodistillation technology. It also aims to establish a correlation between gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) to distinguish essential oils from Cedrus deodara, Pinus thunbergii, Pinus massoniana, and Pinus koraiensis.
Biol Reprod
March 2025
Cell Biology Laboratory, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium.
CRISP2 is enriched in the male reproductive system of mammals and plays roles in spermatogenesis, sperm motility, and fertilization. Although extensively investigated in rodents and boars, human CRISP2 (hCRISP2) remains poorly studied, particularly concerning its localization in testicular and epididymal tissues and its molecular features. In this study, we used immunofluorescence to determine the localization of hCRISP2 in testis, epididymis, and ejaculated sperm.
View Article and Find Full Text PDFHistol Histopathol
February 2025
Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
Canonical and non-canonical Wnt signaling pathways are well-characterized regulators of retinal development. Wnt signaling also promotes neuroprotection and regeneration in adult tissues, including retinal ganglion cell (RGC) survival and axonal regrowth after optic nerve injury. However, it is unknown whether Wnt-dependent neuroprotection after injury in the adult CNS is associated with altered expression of developmental genes.
View Article and Find Full Text PDFJ Sci Food Agric
March 2025
College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.
Background: White tea, an agriculturally distinctive product, exhibits significant aroma variations across different regions. Nevertheless, the mechanisms driving these differences, and distinguishing methods suitable for specific origins, have been scarcely reported. In this study, we analyzed the aroma characteristics and volatile components of 100 white tea samples from ten regions, utilizing sensory evaluation, headspace solid-phase microextraction-gas chromatography-mass spectrometry and chemometrics, then established a discrimination model.
View Article and Find Full Text PDFImmune Netw
February 2025
Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195, USA.
The burgeoning field of immunometabolism highlights the interdependence between metabolic programs and efficacious immune responses. The current understanding that cellular metabolic remodeling is necessary for a competent adaptive immune response, along with acutely sensitive methodologies such as high-performance liquid chromatography/mass spectrometry and advanced proteomics, have ushered in a renaissance of lipid- and metabolic-based scientific inquiries. One facet of recent interest examines how lipids function as post-translational modifications (PTMs) and their resulting effects on adaptive immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!