Three-dimensional laser writing inside silicon remains today inaccessible with the shortest infrared light pulses unless complex schemes are used to circumvent screening propagation nonlinearities. Here, we explore a new approach irradiating silicon with trains of femtosecond laser pulses at repetition rates up to 5.6 THz that is order of magnitude higher than any source used for laser processing so far. This extremely high repetition rate is faster than laser energy dissipation from microvolume inside silicon, thus enabling unique capabilities for pulse-to-pulse accumulation of free carriers generated by nonlinear ionization, as well as progressive thermal bandgap closure before any diffusion process comes into play. By space-resolved measurements of energy delivery inside silicon, we evidence changes in the interplay between detrimental nonlinearities and accumulation-based effects. This leads to a net increase on the level of space-time energy localization. The improvement is also supported by experiments demonstrating high performance for 3D laser writing inside silicon. In comparison to repeated single pulses, irradiation with trains of only four-picosecond pulses with the same total energy leads to an apparent decrease of the energy threshold for modification and drastic improvements on the repeatability, uniformity, and symmetricity of the produced features. The unique benefits of THz bursts can provide a new route to meet the challenge of 3D inscription inside narrow bandgap materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245002 | PMC |
http://dx.doi.org/10.34133/2020/8149764 | DOI Listing |
Biomimetics (Basel)
January 2025
College of Engineering, Design, and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
The ability to control and manipulate biological fluids within microchannels is a fundamental challenge in biological diagnosis and pharmaceutical analyses, particularly when buffers with very high ionic strength are used. In this study, we investigate the numerical and experimental study of fluidic biochips driven by ac electrothermal flow for controlling and manipulating biological samples inside a microchannel, e.g.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticulture, Washington State University Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98221, USA.
Biostimulants are an emerging and innovative class of products that may mitigate the adverse effects of extreme heat, but research on their efficacy in fruit crops is limited. This study addressed this knowledge gap by evaluating the performance of three biostimulants, FRUIT ARMOR™, Optysil®, and KelpXpress™ [active ingredients glycine betaine, silicon, and kelp (Ascophyllum nodosum) extract, respectively] applied to three raspberry genotypes exposed to high temperatures (T ≥ 35 °C/day) inside a glasshouse. 'Meeker' consistently maintained high chlorophyll fluorescence (F/F) and photosynthesis under control and biostimulant treatments.
View Article and Find Full Text PDFOrganometallics
January 2025
Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
We report the synthesis and characterization of a series of high- and low-spin dicobalt complexes of the PNNP expanded pincer ligand. Reacting this dinucleating ligand in its neutral form with two equiv of CoCl(tetrahydrofuran) yields a high-spin dicobalt complex featuring one Co inside and one Co outside of the dinucleating pocket. Performing the same reaction in the presence of two equivalents of KOtBu provides access to a high-spin dicobalt complex wherein both Co centers are bound within the PNNP pocket, and this complex also features a bridging OtBu ligand.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Oral Implant Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
Dentin hypersensitivity is primarily caused by the exposure of dentinal tubules due to various factors, so the key to treatment is to effectively seal these exposed tubules. However, traditional dentinal tubule sealants used in clinical practice often fail to adhere securely to the tubule surface when exposed to external stimuli, resulting in a recurrence of sensitivity. In this study, we developed a silicon micromotor that moved autonomously and loaded with silver nanoparticles and a photosensitive adhesive for dentin sensitivity therapy.
View Article and Find Full Text PDFMolecules
January 2025
School of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!