AI Article Synopsis

  • Agricultural intensification is a major factor contributing to biodiversity loss, as it affects crop diversity and land use intensity, which in turn impacts agricultural biodiversity and ecosystem services.
  • Researchers aim to conduct a systematic review of studies on the relationship between crop diversity and biodiversity in agricultural landscapes, focusing on various metrics such as species richness and community composition.
  • The review will assess study quality, identify gaps in existing research, and provide insights for future directions in nutrition, food systems, and ecological policies.

Article Abstract

Agricultural intensification is a well-known driver of biodiversity loss. Crop diversity and its changes over space and time drive land use intensity and impact biodiversity of agricultural landscapes, while meeting the growing demand for human food and nutrition resources. Loss of biodiversity in agricultural landscapes reduces primary productivity and soil health and erodes a range of other ecosystem services. At present, while having partial understanding of many processes, we lack a general synthesis of our knowledge of the links between crop diversity and biodiversity. We will therefore conduct a systematic review by searching multiple agriculture, ecology and environmental science databases (e.g. Web of Science, Geobase, Agris, AGRICOLA, GreenFILE) to identify studies reporting the impacts of crop diversity and crop type on the biological diversity of fauna and flora in agricultural landscapes. Response variables will include metrics of species richness, abundance, assemblage, community composition and species rarity. Screening, data coding and data extraction will be carried out by one researcher and a subset will be independently carried out by a second researcher for quality control. Study quality and risk of bias will be assessed. Evidence will first be mapped to species/taxa then assessed for further narrative or statistical synthesis based on comparability of results and likely robustness. Gaps in the evidence base will also be identified with a view toward future research and policy directions for nutrition, food systems and ecology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241271PMC
http://dx.doi.org/10.12688/wellcomeopenres.15343.2DOI Listing

Publication Analysis

Top Keywords

crop diversity
16
agricultural landscapes
16
diversity crop
8
crop type
8
type biological
8
biological diversity
8
systematic review
8
biodiversity agricultural
8
will
7
diversity
6

Similar Publications

Genome-wide association mapping of bruchid resistance loci in soybean.

PLoS One

January 2025

Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.

Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.

View Article and Find Full Text PDF

Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.

View Article and Find Full Text PDF

Grazing can alter the physicochemical properties of soil and quickly influence the composition of microbial communities. However, the effects of grazing intensity on fungal community composition in different soil depth remain unclear. On the Inner Mongolia Plateau, we studied the effects of grazing intensity treatments including no grazing (NG), light grazing (LG), moderate grazing (MG), heavy grazing (HG), and over grazing (OG) on the physicochemical properties and fungal community composition of surface (0-20 cm) and subsurface (20-40 cm) soil layers.

View Article and Find Full Text PDF

Pineapple ( (L.) Merrill) is among the main fruits produced in West Africa. This is also the case for the Republic of Benin, where pineapple fruit is regarded as an important crop for numerous producers in the Southern part of the country.

View Article and Find Full Text PDF

, commonly known as the "Chinese hibiscus", is a widely cultivated shrub with ornamental and medicinal applications (Jadhav et al., 2009). However, it is known to be susceptible to a range of pathogens including bacteria (Chase, 1986).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!