Support of somatic growth is a fundamental requirement of tissue-engineered valves. However, efforts thus far have been unable to maintain this support long term. A key event that will determine the valve's long-term success is the extent to which healthy host tissue remodeling can occur on the valve soon after implantation. The construct's phenotypic-status plays a critical role in accelerating tissue remodeling and engineered valve integration with the host via chemotaxis. In the current study, human bone-marrow-derived mesenchymal stem cells were utilized to seed synthetic, biodegradable scaffolds for a period of 8 days in rotisserie culture. Subsequently, cell-seeded scaffolds were exposed to physiologically relevant oscillatory shear stresses (overall mean, time-averaged shear stress, ~7.9 dynes/cm; overall mean, oscillatory shear index, ~0.18) for an additional 2 weeks. The constructs were found to exhibit relatively augmented endothelial cell expression (CD31; compared to static controls) but concomitantly served to restrict the level of the activated smooth muscle phenotype (α-SMA) and also produced very low stem cell secretion levels of fibronectin ( < 0.05 compared to static and rotisserie controls). These findings suggest that fluid-induced oscillatory shear stresses alone are important in regulating a healthy valve phenotype of the engineered tissue matrix. Moreover, as solid stresses could lead to increased α-SMA levels, they should be excluded from conditioning during the culture process owing to their associated potential risks with pathological tissue remodeling. In conclusion, engineered valve tissues derived from mesenchymal stem cells revealed both a relatively robust valvular phenotype after exposure to physiologically relevant scales of oscillatory shear stress and may thereby serve to accelerate healthy valve tissue remodeling in the host post-implantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248568PMC
http://dx.doi.org/10.3389/fcvm.2020.00069DOI Listing

Publication Analysis

Top Keywords

oscillatory shear
20
tissue remodeling
16
physiologically relevant
12
shear stress
12
mesenchymal stem
12
stem cells
12
engineered valve
12
fluid-induced oscillatory
8
shear stresses
8
compared static
8

Similar Publications

Elucidating the effect of chitosan microgel characteristics on the large amplitude oscillatory shear (LAOS) behavior of their stabilized high internal phase emulsions using the sequence of physical processes (SPP) approach and comparison with mayonnaise.

Int J Biol Macromol

January 2025

Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Wuhan 430068, China. Electronic address:

Chitosan microgels (h-CSMs) were prepared by cross-linking hydrophobically modified chitosan with sodium phytate (SP). Emulsions stabilized by h-CSMs with different inter-phase fraction, microgel concentration and cross-linking density were studied of their microstructural and rheological properties. In particular, the large amplitude oscillatory shear (LAOS) of the high internal phase emulsions (HIPEs) stabilized by h-CSMs were systematically analyzed using the Fourier transform with Chebyshev polynomials (FTC) and sequence of physical processes (SPP) methods, to explore their nonlinear rheological properties.

View Article and Find Full Text PDF

Influence of Geometric Parameters on The Hemodynamic Characteristics of The Vertebral Artery.

J Biomech Eng

January 2025

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou 310027, Zhejiang, China; Shanghai Institute for Advanced Study of Zhejiang University, Zhangjiang Guochuang Center phase, No.799, Dangui Road, Shanghai 200120, China.

The carotid and vertebral arteries are principal conduits for cerebral blood supply and are common sites for atherosclerotic plaque formation. To date, there has been extensive clinical and hemodynamic reporting on carotid arteries; however, studies focusing on the hemodynamic characteristics of the vertebral artery (VA) are notably scarce. This article presents a systematic analysis of the impact of VA diameter and the angle of divergence from the subclavian artery (SA) on hemodynamic properties, facilitated by the construction of an idealized VA geometric model.

View Article and Find Full Text PDF

Intermittent negative pressure is an emerging treatment for lower limb vascular disease but the specific physiological effects, particularly upon large artery haemodynamics are unclear. This study examined the influence of intermittent negative pressure upon popliteal artery shear rate during both supine and sitting postures. Eleven healthy participants (5 female; age: 28.

View Article and Find Full Text PDF

The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous-crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from -150 °C to +170 °C has been studied. It has been established that the spectra of internal friction show five local dissipative processes of varying intensity, manifested in different temperature ranges of the spectrum. An anomalous decrease in the frequency of the oscillatory process was detected in the temperature ranges where the most intense dissipative losses appear on the spectrum of internal friction.

View Article and Find Full Text PDF

In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!