Automated Electrochemical Glucose Biosensor Platform as an Efficient Tool Toward On-Line Fermentation Monitoring: Novel Application Approaches and Insights.

Front Bioeng Biotechnol

Department of Chemical and Biochemical Engineering, Process and Systems Engineering Center (PROSYS), Technical University of Denmark, Kongens Lyngby, Denmark.

Published: May 2020

Monitoring and control of fermentation processes remain a crucial challenge for both laboratory and industrial-scale experiments. Reliable identification and quantification of the key process parameters in on-line mode allow operation of the fermentation at optimal reactor efficiency, maximizing productivity while minimizing waste. However, state-of-the-art fermentation on-line monitoring is still limited to a number of standard measurements such as pH, temperature and dissolved oxygen, as well as off-gas analysis as an advanced possibility. Despite the availability of commercial biosensor-based platforms that have been established for continuous monitoring of glucose and various biological variables within healthcare, on-line glucose quantification in fermentation processes has not been implemented yet to a large degree. For the first time, this work presents a complete study of a commercial flow-through-cell with integrated electrochemical glucose biosensors (1 generation) applied in different media, and importantly, at- and on-line during a yeast fed-batch fermentation process. Remarkably, the glucose biosensor-based platform combined with the developed methodology was able to detect glucose concentrations up to 150 mM in the complex fermentation broth, on both cell-free and cell-containing samples, when not compromised by oxygen limitations. This is four to six-fold higher than previously described in the literature presenting the application of biosensors predominately toward cell-free fermentation samples. The automated biosensor platform allowed reliable glucose quantification in a significantly less resource and time (<5 min) consuming manner compared to conventional HPLC analysis with a refractive index (RI) detector performed as reference measurement. Moreover, the presented biosensor platform demonstrated outstanding mechanical stability in direct contact with the fermentation medium and accurate glucose quantification in the presence of various electroactive species. Coupled with the developed methodology it can be readily considered as a simple, robust, accurate and inexpensive tool for real-time glucose monitoring in fermentation processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253623PMC
http://dx.doi.org/10.3389/fbioe.2020.00436DOI Listing

Publication Analysis

Top Keywords

electrochemical glucose
8
biosensor platform
8
fermentation
8
fermentation processes
8
glucose quantification
8
glucose
7
on-line
5
automated electrochemical
4
glucose biosensor
4
platform efficient
4

Similar Publications

Carboxymethyl hexanoyl chitosan drop-coated simple disposable paper electrochemical sensor for quality monitoring of vanillin.

Int J Biol Macromol

December 2024

Nanomaterial research laboratory (NMRL), Smart Materials And Devices, Yenepoya Research Centre, Yenepoya (Deemed to be university), Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India. Electronic address:

The food and pharmaceutical sectors frequently utilize vanillin (VAN), a food ingredient with a pleasing flavor and aroma. However, excessive consumption of VAN causes several health problems, including liver and kidney damage, headaches, skin conditions, nausea, and vomiting. To prevent health problems, it is crucial to identify and control the amount of VAN in food and drugs.

View Article and Find Full Text PDF

The integration of a photosensitive gate into an organic electrochemical transistor has currently emerged as a promising route for biological sensing. However, the modification of the photosensitive gate always involves complex processes, and the degradation of sensitivity of the functional materials under illumination will significantly decrease the stability of the devices. Herein, we designed an organic photoelectrochemical transistor (OPECT) biosensor employing horseradish peroxidase (HRP)@glucose oxidase (GOx)/Pt/n-Si as the photosensitive gate based on the "shadow effect".

View Article and Find Full Text PDF

Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway.

Diabetes Metab J

December 2024

Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.

Background: Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.

View Article and Find Full Text PDF

Wearable multiple sensing platform for enhanced biomolecules monitoring in food.

Food Chem

December 2024

College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, China. Electronic address:

Monitoring of biomolecules in food plays a crucial role in safeguarding human health. Prevalent biomolecule monitoring systems are constructed predominantly from rigid materials and have inherent limitations in detection capabilities. Wearable sensors have increasingly captured attention, significantly propelling the evolution of biomolecular detection process.

View Article and Find Full Text PDF

Owing to the adverse consequences of excess glucose (Glu) and hydrogen peroxide (HO) on humans, it is imperative to develop an electrochemical sensor for detection of these analytes with good selectivity and sensitivity. Herein, a nanohybrid comprising nickel cobaltite nanoparticles (NiCoO NPs) embedded on conductive TiCT nanosheets (NSs) has been prudently designed and employed for the electrochemical detection of Glu and HO. The developed nanohybrid has been systematically characterized using morphological and spectral techniques, and then immobilized on a glassy carbon electrode (GCE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!