AI Article Synopsis

  • Survival rates for newly diagnosed cervical cancer, particularly squamous cell carcinoma (SCCC), have not improved significantly in recent decades, prompting researchers to find prognostic genes that could help predict patient outcomes.
  • An analysis of RNA-sequencing data from 203 patients led to the identification of 42 high-risk genes, with a focus on those whose expression levels could indicate considerable survival differences; a machine learning approach produced a transcriptomic risk score (TRS) based on 9 of these genes for better survivability predictions.
  • Findings revealed that TRS was a more reliable predictor of mortality than traditional clinical factors, with specific high-risk groups identified, including 18% of earlier-stage patients classified as high-risk based on their TR

Article Abstract

Survival for patients with newly diagnosed cervical cancer has not significantly improved over the past several decades. We sought to identify a clinically relevant set of prognostic genes for squamous cell carcinoma of the cervix (SCCC), the most common cervical cancer subtype. Using RNA-sequencing data and survival data from 203 patients in The Cancer Genome Atlas (TCGA), we conducted a series of analyses using different decile cutoffs for gene expression to identify genes that could indicate large and consistent survival differences across different decile cutoffs of gene expression. Those analyses identified 42 high-risk genes. A patient's survivability could be estimated by simply counting the number of high-risk genes with extremely high expression (above the 90 percentile) or estimating a transcriptomic risk score (TRS) using a machine learning algorithm with 9 of the 42 genes. On multivariate analysis, the significant predictors of mortality included high TRS (HR = 44.8), stage IV (HR = 28.1), intermediate TRS (HR = 4.75), and positive lymph node status (HR = 2.92). Approximately 18% of earlier-stage patients were identified as a poor-prognosis subgroup with high TRS. In patients with SCCC, transcriptomic risk appears to better predict survival than clinical prognostic factors, including stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269782PMC

Publication Analysis

Top Keywords

squamous cell
8
cell carcinoma
8
carcinoma cervix
8
cervical cancer
8
decile cutoffs
8
cutoffs gene
8
gene expression
8
high-risk genes
8
transcriptomic risk
8
high trs
8

Similar Publications

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.

View Article and Find Full Text PDF

BMP4 regulates differentiation of nestin-positive stem cells into melanocytes.

Cell Mol Life Sci

January 2025

Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.

Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.

View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!