Methods: Twenty-two community-dwelling patients with chronic hemiplegia participated in this study. Eight participants performed only discrete-skill step training during the loading response phase, focusing on paretic hip extension movement (LR group). Another eight performed only discrete-skill step training during the preswing phase, focusing on paretic swing movement (PSw group). The remaining six were trained using both training methods, with at least 6 months in each group to washout the influence of previous training. Therefore, the final number of participants in each group was 14. The braking and propulsive forces of GRFs were measured during gait before and after 30 repetitions of the discrete-skill step training.

Results: Although both groups showed a significant increase in stride length, walking speed was increased only in the LR group. The PSw group showed an increase in braking forces of both sides without any change in propulsion. In the LR group, paretic braking impulse did not change, while nonparetic propulsion increased.

Conclusion: The discrete-skill step training during loading response phase induced an increase in nonparetic propulsion, resulting in increased walking speed. This study provides a clear understanding of immediate effects of the discrete-skill step training in patients with chronic stroke and helps improve interventions in long-term rehabilitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254076PMC
http://dx.doi.org/10.1155/2020/2397374DOI Listing

Publication Analysis

Top Keywords

step training
20
discrete-skill step
20
patients chronic
8
performed discrete-skill
8
training loading
8
loading response
8
response phase
8
phase focusing
8
focusing paretic
8
psw group
8

Similar Publications

Drug development is known to be a costly and time-consuming process, which is prone to high failure rates. Drug repurposing allows drug discovery by reusing already approved compounds. The outcomes of past clinical trials can be used to predict novel drug-disease associations by leveraging drug- and disease-related similarities.

View Article and Find Full Text PDF

Light-Driven Stepwise Reduction of Aliphatic Carboxylic Esters to Aldehydes and Alcohols.

Angew Chem Int Ed Engl

January 2025

Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, East Outer Ring Road, 650500, Kunming, CHINA.

The reduction of carboxylic esters to aldehydes and alcohols is a fundamental functional group transformation in chemistry. However, the inertness of carbonyl group and the instability of ketyl radical anion intermediate impede the reduction of carboxylic esters via photochemical strategy. Herein, we described the reduction of aliphatic carboxylic esters with synergistic dual photocatalysis via phenolate-catalyzed single electron transfer process and thiol-catalyzed hydrogen atom transfer process.

View Article and Find Full Text PDF

A generalizable normative deep autoencoder for brain morphological anomaly detection: application to the multi-site StratiBip dataset on bipolar disorder in an external validation framework.

Artif Intell Med

January 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

The heterogeneity of psychiatric disorders makes researching disorder-specific neurobiological markers an ill-posed problem. Here, we face the need for disease stratification models by presenting a generalizable multivariate normative modelling framework for characterizing brain morphology, applied to bipolar disorder (BD). We used deep autoencoders in an anomaly detection framework, combined for the first time with a confounder removal step that integrates training and external validation.

View Article and Find Full Text PDF

Introduction: Endothelial cells (ECs) play a crucial role in many treatments for cardiovascular diseases, such as blood vessel repair, tissue engineering, and drug delivery. The process of differentiating these cells is complex and involves various sources and numerous molecular and cellular events. Differentiating pluripotent stem cells (PSCs) into endothelial cells are one of the most effective sources for creating ECs in the lab and offers great potential for regenerative medicine.

View Article and Find Full Text PDF

Photosensitizable ZIF-8 BioMOF for Stimuli-Responsive Antimicrobial Phototherapy.

Mol Pharm

January 2025

Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India.

Resistant pathogens are increasingly posing a heightened risk to healthcare systems, leading to a growing concern due to the lack of effective antimicrobial treatments. This has prompted the adoption of antimicrobial photodynamic therapy (aPDT), which eradicates microorganisms by generating reactive oxygen species (ROS) through the utilization of a photosensitizer, photons, and molecular oxygen. However, a challenge arises from the inherent characteristics of photosensitizers, including photobleaching, aggregation, and self-quenching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!