Limitations of Systemic Oncological Therapy in Breast Cancer Patients with Chronic Kidney Disease.

J Oncol

Department of Internal Diseases and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-027, Poland.

Published: May 2020

Breast cancer is the most common malignancy, affecting middle-age and older women frequently suffering from other chronic diseases, including chronic kidney disease. The risk of breast cancer development in women on renal replacement therapy (peritoneal dialysis and haemodialysis) is higher than in the general population. Chronic kidney disease does not limit surgical treatment or radiotherapy; however, it affects the pharmacokinetics of drugs used in the systematic treatment to a different extent, increasing their toxicity and the risk of adverse drug reactions. This article summarizes the current knowledge (published studies accessed through PUBMED) on drugs used in chemotherapy, hormone therapy, anti-HER2 drugs, CDK4/6 inhibitors, PARP inhibitors, and immune therapy in breast cancer patients undergoing dialysis. We discuss the data, the optimal choice of the chemotherapeutic protocol, and the administration of drugs in a specific time relation to the haemodialysis session to ensure the most effective and safe treatment to breast cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251456PMC
http://dx.doi.org/10.1155/2020/7267083DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
cancer patients
12
chronic kidney
12
kidney disease
12
therapy breast
8
breast
5
cancer
5
limitations systemic
4
systemic oncological
4
therapy
4

Similar Publications

Management of nausea and vomiting induced by antibody-drug conjugates.

Breast Cancer

January 2025

Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.

Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapy that combines the specificity and long circulation half-life of monoclonal antibodies with the cytotoxic potency of the payload connected through a chemical linker. The optimal management of toxicities is crucial for improving quality of life in patients undergoing ADCs and for avoiding improper dose reductions or discontinuations. This article focuses on the characteristics and management of nausea and vomiting (NV) induced by three ADCs: trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG), and datopotamab deruxtecan (Dato-DXd).

View Article and Find Full Text PDF

Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!