Climate is a major factor of the physical environment influencing terroir expression in viticulture. Thermal conditions strongly impact vine development and grape composition. Spatializing this parameter at local scale allows for more refined vineyard management. In this study, temperature variability was investigated over an area of 19,233 ha within the appellations of Saint-Émilion, Pomerol, and their satellites (Bordeaux, France). A network of 90 temperature sensors was deployed inside grapevine canopies of this area and temperatures were measured from 2012 through 2018. To determine the effect of temperature on vine development, the phenological stages (budbreak, flowering, and véraison) were recorded on 60 reference plots planted with L. cv. Merlot located near the temperature sensors. Results showed great spatial variability in temperature, especially minimum temperature, with an amplitude of up to 10°C on a given day. The spatial variability of the Winkler index measured in the canopy inside a given vintage was around 320 degree-days. This research explores the main factors affecting spatial variability in temperature, such as environmental factors and meteorological conditions. The impact of temperature on vine behavior was also analyzed. Observed phenological dates were compared to those estimated using the Grapevine Flowering Véraison model. Maps of temperatures and phenological observations were created over this area and provided a useful tool for improved adaptation of plant material and training systems to local temperature variability and change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251079 | PMC |
http://dx.doi.org/10.3389/fpls.2020.00515 | DOI Listing |
Environ Res
January 2025
School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Gross primary production (GPP) plays a crucial role in carbon cycling and ecosystem productivity, yet its variability is significantly influenced by climatic factors. This study investigates the spatiotemporal variability of GPP in China's terrestrial ecosystems, with a focus on water and energy limitations. It aims to clarify the relationship between GPP and climatic variables across different regimes.
View Article and Find Full Text PDFPLoS One
January 2025
Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, United States of America.
Marine heatwaves are increasing in intensity and frequency however, responses and survival of reef corals vary geographically. Geographical differences in thermal tolerance may be in part a consequence of intraspecific diversity, where high-diversity localities are more likely to support heat-tolerant alleles that promote survival through thermal stress. Here, we assessed geographical patterns of intraspecific genetic diversity in the ubiquitous coral Pocillopora damicornis species complex using 428 sequences of the Internal Transcribed Spacer 2 (ITS2) region across 44 sites in the Pacific and Indian Oceans.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
Three new hexagonal perovskites with CsMMRhCl (M = Na, Ag; M = Mn, Fe) stoichiometry have been synthesized from solution precipitation reactions. These air-stable compounds crystallize as triply cation-ordered variants of the 6H perovskite structure. This structure contains octahedra that share a common face to form MRhCl dimers that are arranged on a two-dimensional triangular network.
View Article and Find Full Text PDFZhongguo Xue Xi Chong Bing Fang Zhi Za Zhi
December 2024
Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, Yunnan 671000, China.
Objective: To predict the potential geographic distribution of in Yunnan Province using random forest (RF) and maximum entropy (MaxEnt) models, so as to provide insights into surveillance and control in Yunnan Province.
Methods: The snail survey data in Yunnan Province from 2015 to 2016 were collected and converted into snail distribution site data. Data of 22 environmental variables in Yunnan Province were collected, including twelve climate variables (annual potential evapotranspiration, annual mean ground surface temperature, annual precipitation, annual mean air pressure, annual mean relative humidity, annual sunshine duration, annual mean air temperature, annual mean wind speed, ≥ 0 ℃ annual accumulated temperature, ≥ 10 ℃ annual accumulated temperature, aridity and index of moisture), eight geographical variables (normalized difference vegetation index, landform type, land use type, altitude, soil type, soil textureclay content, soil texture-sand content and soil texture-silt content) and two population and economic variables (gross domestic product and population).
Ann Bot
January 2025
Research Department, Holden Arboretum, Kirtland, OH, USA.
Background: Plants often shift their phenology in response to climate warming, with potentially important ecological consequences. Relative differences in the abilities of native and nonnative plants to track warming temperatures by adjusting their phenologies could have cascading consequences for ecosystems. Our general understanding of nonnative species leads us to believe these species may be more phenologically sensitive than native species, but evidence for this has been mixed, likely due, in part, to the myriad of diverse ecological contexts in which nonnatives have been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!