An organism's gut microbiome handles most of the metabolic processes associated with food intake and digestion but can also strongly affect health and behavior. A stable microbial core community in the gut provides general metabolic competences for substrate degradation and is robust against extrinsic disturbances like changing diets or pathogens. Black Soldier Fly larvae (BSFL; ) are well known for their ability to efficiently degrade a wide spectrum of organic materials. The ingested substrates build up the high fat and protein content in their bodies that make the larvae interesting for the animal feedstuff industry. In this study, we subjected BSFL to three distinct types of diets carrying a low bioburden and assessed the diets' impact on larval development and on the composition of the bacterial and archaeal gut community. No significant impact on the gut microbiome across treatments pointed us to the presence of a predominant core community backed by a diverse spectrum of low-abundance taxa. spp., spp., and spp. as main members of this community provide various functional and metabolic skills that could be crucial for the thriving of BSFL in various environments. This indicates that the type of diet could play a lesser role in guts of BSFL than previously assumed and that instead a stable autochthonous collection of bacteria provides the tools for degrading of a broad range of substrates. Characterizing the interplay between the core gut microbiome and BSFL helps to understand the involved degradation processes and could contribute to further improving large-scale BSFL rearing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253588 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.00993 | DOI Listing |
J Anim Sci Biotechnol
January 2025
Department of Animal Science, University of Arkansas, Fayetteville, AR, USA.
Background: Sow longevity and reproductivity are essential in the modern swine industry. Although many studies have focused on the genetic and genomic factors for selection, little is known about the associations between the microbiome and sows with longevity in reproduction.
Results: In this study, we collected and sequenced rectal and vaginal swabs from 48 sows, nine of which completed up to four parities (U4P group), exhibiting reproductive longevity.
J Transl Med
January 2025
Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Background: This study investigated the oral microbiome signatures associated with upper gastrointestinal (GI) and pancreaticobiliary cancers.
Methods: Saliva samples from cancer patients and age- and sex-matched healthy controls were analyzed using 16S rRNA-targeted sequencing, followed by comprehensive bioinformatics analysis.
Results: Significant dissimilarities in microbial composition were observed between cancer patients and controls across esophageal cancer (EC), gastric cancer (GC), biliary tract cancer (BC), and pancreatic cancer (PC) groups (R = 0.
Anim Microbiome
January 2025
School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, UK.
Background: Cryptosporidiosis is a diarrheal disease that commonly affects calves under 6 weeks old. The causative agent, Cryptosporidium parvum, has been associated with the abundance of specific taxa in the faecal microbiome during active infection. However, the long-term impact of these microbiome shifts, and potential effects on calf growth and health have not yet been explored in depth.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
As plant-based diets gain traction, interest in their impacts on the gut microbiome is growing. However, little is known about diet-pattern-specific metagenomic profiles across populations. Here we considered 21,561 individuals spanning 5 independent, multinational, human cohorts to map how differences in diet pattern (omnivore, vegetarian and vegan) are reflected in gut microbiomes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, University of Padova, Padova, Italy.
While Drosophila melanogaster serves as a crucial model for investigating both the circadian clock and gut microbiome, our understanding of their relationship in this organism is still limited. Recent analyses suggested that the Drosophila gut microbiome modulates the host circadian transcriptome to minimize rapid oscillations in response to changing environments. Here, we examined the composition and abundance of the gut microbiota in wild-type and arrhythmic per flies, under 12 h:12 h light: dark (12:12 LD) and constant darkness (DD) conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!