Aerobic Exercise Training in Patients With mtDNA-Related Mitochondrial Myopathy.

Front Physiol

Copenhagen Neuromuscular Clinic, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

Published: May 2020

In patients with mitochondrial DNA (mtDNA) mutation, a pathogenic mtDNA mutation is heteroplasmically distributed among tissues. The ratio between wild-type and mutated mtDNA copies determines the mtDNA mutation load of the tissue, which correlates inversively with oxidative capacity of the tissue. In patients with mtDNA mutation, the mutation load is often very high in skeletal muscle compared to other tissues. Additionally, skeletal muscle can increase its oxygen demand up to 100-fold from rest to exercise, which is unmatched by any other tissue. Thus, exercise intolerance is the most common symptom in patients with mtDNA mutation. The impaired oxidative capacity in skeletal muscle in patients with mtDNA mutation results in limitation in physical capacity that interferes with daily activities and impairs quality of life. Additionally, patients with mitochondrial disease due to mtDNA mutation often live a sedentary lifestyle, which further impair oxidative capacity and exercise tolerance. Since aerobic exercise training increase mitochondrial function and volume density in healthy individuals, studies have investigated if aerobic training could be used to counteract the progressive exercise intolerance in patients with mtDNA mutation. Overall studies investigating the effect of aerobic training in patients with mtDNA mutation have shown that aerobic training is an efficient way to improve oxidative capacity in this condition, and aerobic training seems to be safe even for patients with high mtDNA mutation in skeletal muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253634PMC
http://dx.doi.org/10.3389/fphys.2020.00349DOI Listing

Publication Analysis

Top Keywords

mtdna mutation
40
patients mtdna
20
oxidative capacity
16
skeletal muscle
16
aerobic training
16
mtdna
11
mutation
11
patients
9
aerobic exercise
8
exercise training
8

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.

Background: The mitochondrial cascade hypothesis suggests that mitochondrial dysfunction plays an important role in the pathogenesis of Alzheimer's disease dementia. Recent data have shown that mitochondrial DNA copy number (mtDNAcn) in human blood is associated with dementia risk and cognitive function, but which specific cognitive measures or domains are associated with mitochondrial dysfunction and whether this relationship is affected by health deterioration such as physical frailty or mitochondrial somatic mutations is not clear.

Methods: We measured mtDNAcn and heteroplasmies using fastMitoCalc and MitoCaller, respectively, from UK Biobank Whole Genome Sequencing (WGS) data at study entry (2006-2010).

View Article and Find Full Text PDF

Objective: To explore the genotype-phenotype correlation in a Charcot-Marie-Tooth type 2A2A (CMT2A2A) pedigree and to provide genetic counseling for its subsequent pregnancies.

Methods: A Chinese pedigree presenting with "lower limb muscle atrophy and movement disorders" at the Prenatal Diagnosis Center of Xuzhou Central Hospital between January and August 2024 was selected as the study subject. Relevant clinical data were collected from the pedigree members.

View Article and Find Full Text PDF

Objective: To assess the feasibility of first polar body transfer (PB1T) combined with preimplantation mitochondrial genetic testing for blocking the transmission of a pathogenic mitochondrial DNA 8993T>G mutation.

Methods: A Chinese family affected with Leigh syndrome which had attended the Reproductive Medicine Centre of the First Affiliated Hospital of Anhui Medical University in September 2021 was selected as the study subject. Controlled ovarian hyperstimulation was carried out for the proband after completing the detection of the mitochondrial DNA 8993T>G mutation load among the pedigree members.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations.

View Article and Find Full Text PDF

Objective: In this study, we examined the genetic, medical, and molecular traits of two Han Chinese families with the tRNA G5783A mutation to investigate the relationship between mitochondrial DNA (mtDNA) mutations and major depressive disorder (MDD).

Methods: Clinical data and comprehensive mitochondrial genomes were collected from the two families. Variants were assessed for evolutionary conservation, allelic frequencies, and their structural and functional impacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!