Epithelial-mesenchymal transition (EMT) is an important event in embryonic development, fibrosis and cancer invasion. During cancer progression, the activation of EMT permits cancer cells to acquire migratory, invasive and stem-like properties. Despite recent advances in treatment, there is no improvement in the 5-year overall survival rate of oral squamous cell carcinoma (OSCC). Local recurrence and lymph node metastasis are considered to be mainly responsible for the low survival rate in OSCC. EMT plays a major role in local recurrence and lymph node metastasis of oral cancer. This review article addresses the clinical implications of EMT in OSCC and explains the molecular mechanisms of EMT, highlighting the cadherin switching and signaling pathways involved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269282PMC
http://dx.doi.org/10.4103/jomfp.JOMFP_334_19DOI Listing

Publication Analysis

Top Keywords

epithelial-mesenchymal transition
8
oral squamous
8
squamous cell
8
cell carcinoma
8
molecular mechanisms
8
clinical implications
8
survival rate
8
local recurrence
8
recurrence lymph
8
lymph node
8

Similar Publications

Research review and transcriptomic insights into Benzalkonium chloride inhalation and disease association.

Ecotoxicol Environ Saf

January 2025

College of Pharmacy, Korea University, Sejong 30019, South Korea. Electronic address:

The widespread use of disinfectants, particularly during the coronavirus disease (COVID-19) pandemic, has significantly increased human exposure to biocides, raising concerns about their potential health risks, especially when inhaled. Benzalkonium chloride (BKC), a quaternary ammonium compound commonly used as a disinfectant and preservative, is a notable example because it is frequently used in household products and medical settings. Despite its broad usage, limited research has been conducted on the respiratory and systemic toxicities of BKC.

View Article and Find Full Text PDF

The tumor suppressor fragile histidine triad (FHIT) is frequently lost in non-small cell lung cancer (NSCLC). We previously showed that a down-regulation of FHIT causes an up-regulation of the activity of HER2 associated to an epithelial-mesenchymal transition (EMT) and that lung tumor cells harboring a FHIT/pHER2 phenotype are sensitive to anti-HER2 drugs. Here, we sought to decipher the FHIT-regulated HER2 signaling pathway in NSCLC.

View Article and Find Full Text PDF

Objective: Interleukin-17 E (IL-17E) is a pro-inflammatory cytokine that participates in the inflammatory response and tumorigenesis. However, the function of IL-17E in non-small cell lung cancer (NSCLC) remains largely unknown.

Methods: The clinical value of IL-17E was determined by immunohistochemistry (IHC) in 75 cases of NSCLC tissues.

View Article and Find Full Text PDF

Dim blue light at night worsens high-fat diet-induced kidney damage via increasing corticosterone levels and modulating the expression of circadian clock genes.

Ecotoxicol Environ Saf

January 2025

National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China. Electronic address:

Obesity is a contributing factor that increases the likelihood of developing chronic kidney disease. In recent years, studies have found that light pollution worldwide promoted obesity, which was known to be a consequence of circadian rhythm disruption. Nevertheless, the impact of light pollution on kidney disease associated with obesity remains mostly unknown, and potential processes have been minimally investigated.

View Article and Find Full Text PDF

Objectives:  Epithelial-mesenchymal transition (EMT) is a process that shifts cellular phenotype. It is linked to several different inflammatory diseases including periodontitis. This study was conducted to investigate the involvement of the EMT process in an experimental periodontitis (EP) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!