AI Article Synopsis

  • Crohn's disease (CD) is a complex illness with many unknowns regarding its underlying biological mechanisms; a study aimed to investigate the gene expressions in ileum tissues from CD patients and controls.
  • Analysis revealed that the TMIGD1 gene is underexpressed in CD-affected tissues, particularly in inflamed ileum, suggesting a potential link to the disease's pathology.
  • Using advanced transcriptomic techniques, the research identifies TMIGD1 as a new target for understanding CD, connecting it to processes of cell recovery and tissue remodeling that could inform future therapies.

Article Abstract

Crohn's disease (CD) is a complex and multifactorial illness. There are still considerable gaps in our knowledge regarding its pathophysiology. A transcriptomic approach could shed some light on little-known biological alterations of the disease. We therefore aimed to explore the ileal transcriptome to gain knowledge about CD. We performed whole transcriptome gene expression analysis on ileocecal resections from CD patients and inflammatory bowel disease-free controls, as well as on a CD-independent cohort to replicate selected results. Normalized data were hierarchically clustered, and gene ontology and the molecular network were studied. Cell cultures and molecular methods were used for further evaluations. Genome-wide expression data analysis identified a robust transmembrane immunoglobulin domain-containing 1 (TMIGD1) gene underexpression in CD tissue, which was even more marked in inflamed ileum, and which was replicated in the validation cohort. Immunofluorescence showed TMIGD1 to be located in the apical microvilli of well-differentiated enterocytes but not in intestinal crypt. This apical TMIGD1 was lower in the noninflamed tissue and almost disappeared in the inflamed mucosa of surgical resections. In vitro studies showed hypoxic-dependent TMIGD1 decreased its expression in enterocyte-like cells. The gene enrichment analysis linked TMIGD1 with cell recovery and tissue remodeling in CD settings, involving guanylate cyclase activities. Transcriptomics may be useful for finding new targets that facilitate studies of the CD pathology. This is how TMIGD1 was identified in CD patients, which was related to multiciliate ileal epithelial cell differentiation. This is a single-center translational research study that aimed to look for key targets involved in Crohn's disease and define molecular pathways through different functional analysis strategies. With this approach, we have identified and described a novel target, the almost unknown TMIGD1 gene, which may be key in the recovery of injured mucosa involving intestinal epithelial cell differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00027.2020DOI Listing

Publication Analysis

Top Keywords

epithelial cell
12
cell differentiation
12
crohn's disease
12
tmigd1
8
ileal epithelial
8
tmigd1 gene
8
cell
5
gene
5
transcriptomic identification
4
identification tmigd1
4

Similar Publications

Endocytosis of Wnt ligands from surrounding epithelial cells positions microtubule nucleation sites at dendrite branch points.

PLoS Biol

January 2025

Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America.

Microtubule nucleation is important for microtubule organization in dendrites and for neuronal injury responses. The core nucleation protein, γTubulin (γTub), is localized to dendrite branch points in Drosophila sensory neurons by Wnt receptors and scaffolding proteins on endosomes. However, whether Wnt ligands are important is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

Downregulation of FcRn promotes ferroptosis in herpes simplex virus-1-induced lung injury.

Cell Mol Life Sci

January 2025

School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, China.

Herpes simplex virus type I (HSV-1) infection is associated with lung injury; however, no specific treatment is currently available. In this study, we found a significant negative correlation between FcRn levels and the severity of HSV-1-induced lung injury. HSV-1 infection increases the methylation of the FcRn promoter, which suppresses FcRn expression by upregulating DNMT3b expression.

View Article and Find Full Text PDF

Radiation therapy (RT) is fundamental to the fight against cancer because of its exceptional ability to target and destroy cancer cells. However, conventional radiation therapy can significantly affect the adjacent normal tissues, leading to fibrosis, inflammation, and decreased organ function. This tissue damage not only reduces the quality of life but also prevents the total elimination of cancer.

View Article and Find Full Text PDF

Purpose: R-spondin3 (RSPO3), a mammalian-specific amplifier of WNT signaling pathway, maintains the homeostasis of various adult stem cells. However, its expression at the limbus and the effect on limbal epithelial stem cells (LESCs) remains unclear. We investigated the impact of RSPO3 on the proliferation and self-renewal of LESCs and explored its molecular mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!