In a previous study we identified EARLY BUD BREAK 1 (EBB1), an ERF transcription factor, in peach (Prunus persica var. nectarina cultivar Zhongyou 4); however, little is known of how PpEBB1 may regulate bud break. To verify the function of PpEBB1 in bud break, PpEBB1 was transiently transformed into peach buds, resulting in early bud break. Bud break occurred earlier in PpEBB1-oe poplar (Populus trichocarpa) obtained by heterologous transformation than in wild type (WT), consistent with the peach bud results, indicating that PpEBB1 can promote bud break. To explore how PpEBB1 affects bud break, differentially expressed genes (DEGs) between WT and PpEBB1-oe poplar plants were identified by RNA-sequencing. The expression of DEGs associated with hormone metabolism, cell cycle, and cell wall modifications changed substantially according to qRT-PCR. Auxin, ABA, and total trans-zeatin-type cytokinin levels were higher in the PpEBB1-oe plants than in WT plants, while the total N6-(Δ 2-isopentenyl)-adenine-type cytokinins was lower. Yeast two-hybrid and bimolecular fluorescence complementation assays verified that a cell wall modification-related protein (PpEXBL1) interacted with PpEBB1 suggesting that PpEBB1 could interact with these cell wall modification proteins directly. Overall, our study proposed a multifaceted explanation for how PpEBB1 regulates bud break and showed that PpEBB1 promotes bud break by regulating hormone metabolism, the cell cycle, and cell wall modifications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475240 | PMC |
http://dx.doi.org/10.1093/jxb/eraa119 | DOI Listing |
Plant J
December 2024
Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
Tea plants are perennial evergreen woody crops that originated in low latitudes but have spread to high latitudes. Bud dormancy is an important adaptation mechanism to low temperatures, and its timing is economically significant for tea production. However, the core molecular networks regulating dormancy and bud break in tea plants remain unclear.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.
Physiol Plant
November 2024
Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.
Int J Biometeorol
November 2024
Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, Bologna, 40128, Italy.
Crop phenology is very important in regular crop monitoring. Generally, phenology is monitored through field observation surveys or satellite data. The relationships between ground observations and remotely sensed derived phenological data can enable near-real-time monitoring over large areas, which has never been attempted on hazelnuts.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China.
Flavonoids are pharmacologically active compounds in flowers of '' (); however, the molecular regulatory network governing flower development remains largely elusive. Flower samples were collected at four stages, namely budding (BD), bud breaking (BB), early blooming (EB), and full blooming (FB), for omics analysis. We revealed distinct transcriptional regulation patterns at these four stages of the flower from the perspective of differentially expressed unigenes (DEGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!