A CT-based Radiomics Model for Prediction of Lymph Node Metastasis in Early Stage Gastric Cancer.

Acad Radiol

Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. Electronic address:

Published: June 2021

Rationale And Objectives: To develop and validate a CT-based radiomics model for preoperative prediction of lymph node metastasis (LNM) in early stage gastric cancer (EGC).

Materials And Methods: Four hundred and sixty-three consecutive EGC patients were enrolled in this retrospective study. Radiomics features were extracted from portal venous phase CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. The predictive performance of radiomics signature was tested in the training and testing cohorts. Multivariate logistic regression analysis was conducted to build a radiomics-based model combined radiomics signature and lymph node status according to CT. Performance of the model was determined by its discrimination, calibration, and clinical usefulness.

Results: The radiomics signature comprised six robust features showed significant association with LNM in both cohorts. A radiomics model that incorporated radiomics signature and CT-reported lymph node status showed good calibration and discrimination in the training cohort (AUC = 0.91) and testing cohort (AUC = 0.89). Decision curve analysis confirmed the clinical utility of this model.

Conclusion: The CT-based radiomics model showed favorable accuracy for prediction of LNM in EGC and may help to improve clinical decision-making.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2020.03.045DOI Listing

Publication Analysis

Top Keywords

radiomics signature
20
radiomics model
16
lymph node
16
ct-based radiomics
12
radiomics
9
prediction lymph
8
node metastasis
8
early stage
8
stage gastric
8
gastric cancer
8

Similar Publications

Radiomic signatures of brain metastases on MRI: utility in predicting pathological subtypes of lung cancer.

Transl Cancer Res

December 2024

Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.

Background: The pathological sub-classification of lung cancer is crucial in diagnosis, treatment and prognosis for patients. Quick and timely identification of pathological subtypes from imaging examinations rather than histological tests could help guiding therapeutic strategies. The aim of the study is to construct a non-invasive radiomics-based model for predicting the subtypes of lung cancer on brain metastases (BMs) from multiple magnetic resonance imaging (MRI) sequences.

View Article and Find Full Text PDF

Purpose: Identifying patients who may benefit from multiple drilling are crucial. Hence, the purpose of the study is to utilize radiomics and deep learning for predicting no-collapse survival in patients with femoral head osteonecrosis.

Methods: Patients who underwent multiple drilling were enrolled.

View Article and Find Full Text PDF

Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients.

Acad Radiol

January 2025

Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (X.W., C.C., W.C., Y.G., X.L., X.J.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address:

Rationale And Objectives: The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop and validate a model that integrates deep learning and sub-regional radiomics from MRI imaging to predict pathological complete response (pCR) in patients with LARC.

Materials And Methods: We retrospectively enrolled 768 eligible participants from three independent hospitals who had received neoadjuvant chemoradiotherapy followed by radical surgery.

View Article and Find Full Text PDF

Objective: To assess the efficacy of computed tomography (CT)-based radiomics nomogram in predicting perineural invasion (PNI) in patients with hypopharyngeal squamous cell carcinoma (HPSCC).

Materials And Methods: Overall, 146 patients were retrospectively recruited and divided into training and test cohorts at a 7:3 ratio. Radiomics features were extracted and delta and absolute delta radiomics features were calculated.

View Article and Find Full Text PDF

Background: Accurately assessing the activity of Crohn's disease (CD) is crucial for determining prognosis and guiding treatment strategies for CD patients.

Objective: This study aimed to develop and validate a nomogram for assessing CD activity.

Methods: The semi-automatic segmentation method and PyRadiomics software were employed to segment and extract radiomics features from the spectral CT enterography images of lesions in 107 CD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!