Recently, there has been a rapid growth of using bio-based materials in pharmaceutical applications, due to their low cost and availability. In this study, natural composition of cellaburate (cellulose-ester) and colophony (pine-resin) was used to prepare films to control ibuprofen release from its amorphous solid dispersion. The effect of two preparation technologies of spin-coating and hot-melt-extrusion was studied on the physicochemical properties and in vitro dissolution/release behavior. Physical stability was evaluated for 12 w at 54 %RH/22 °C. Characterization involved using PLM/DSC/MTDSC/ATRFTIR/TGA/SEM and PXRD. Ibuprofen was amorphously-dispersed at 30 %(w/w) in 35:65 colophony:cellaburate films. Spin-films were more physically stable over 12 w; however, controlled release of ibuprofen was achieved mainly from hot-melt-extruded-films for 5 h. Both films have shown first-order release kinetics; whereby polymeric swelling and relaxation likely governed the release. The successful preparation of cellaburate-colophony platform that has achieved tunable release profiles of poorly water-soluble drug holds the potential for further drug delivery development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116265DOI Listing

Publication Analysis

Top Keywords

controlled release
8
release
6
evaluation amorphous
4
amorphous dispersion
4
dispersion cellulose
4
cellulose ester-colophony
4
ester-colophony mix
4
ibuprofen
4
mix ibuprofen
4
ibuprofen controlled
4

Similar Publications

Interaction of cesium compounds with abundant inorganic compounds of atmosphere: Effect on cloud formation potential and settling.

J Hazard Mater

January 2025

Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.

Experiments were conducted in controlled laboratory conditions to determine the size-resolved CCN (Cloud Condensation Nuclei) activity of sub micrometer-sized aerosols containing nuclear fission products (CsI and CsOH) and abundant ambient inorganic aerosols ammonium sulphates ((NH)SO), ammonium chloride (NHCl), sodium nitrate (NaNO), and sodium chloride (NaCl). The presence of these atmospheric-relevant compounds internally mixed with fission product compounds has the potential to affect the capacity of ambient particulates of aerosols to absorb water and function as CCN. Once in the atmosphere, the dynamics of airborne radionuclides and subsequently their fate gets affected by dry and wet deposition processes.

View Article and Find Full Text PDF

Corrigendum to 'Facile synthesis of flower-cluster ZIF nanocarriers: Performance in controlled release of thiamethoxam and insecticidal activity' [Environ. Res. 268 (2025) 120753].

Environ Res

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China. Electronic address:

View Article and Find Full Text PDF

Cota is a lipidated dual GLP-1 and Glucagon receptor agonist that was investigated for the treatment of various metabolic diseases, it is designed for once daily subcutaneous administration. Invasive daily injections often result in poor patient compliance with chronic disease, and here, we demonstrate an innovative strategy of encapsulating reversible cota self-assembled fibers within an in-situ forming depot of low molecular weight poly(lactic-co-glycolic) acid (LWPLGA) for sustained delivery GLP-1 and Glucagon receptor agonist with controlled burst release. This could be a suitable alternative to other sustained delivery strategies for fibrillating peptides.

View Article and Find Full Text PDF

Deep eutectic solvent-mediated extraction of lignin: A novel strategy for producing high-quality biopolymers in controlled-release mulching applications.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China. Electronic address:

Microplastic contamination of low-density polyethylene mulch and nutrient loss from fertilizers present significant challenges in the crop-growing. In this study, the focus was on creating a biodegradable film that combines the advantages of plastic film, thermal insulation and water retention, as well as the controlled release of fertilizer. A key innovation was the efficient introduction of low molecular weight and low dispersibility of poplar lignin into chitosan and polyvinyl alcohol matrices.

View Article and Find Full Text PDF

Hollow mesoporous silica nanoparticles for drug formulation and delivery: Opportunities for cancer therapy.

Colloids Surf B Biointerfaces

January 2025

Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 East 1st Ring Road, Hanzhong, Shaanxi 723001, PR China.

The advantages of large surface area, high volume ratio, good biocompatibility, and controllable surface functionalization make hollow mesoporous silica nanoparticles (HMSNs) an ideal drug carrier. HMSNs can achieve high efficiency, targeting, and controlled release by adjusting the microstructure and surface modification of its particles, which makes it broad application prospects in the field of medical therapy, especially in cancer therapy. Numerous studies have shown that preparation method, shape, particle size, hollow inner diameter, aperture and wall thickness of the HMSNs, the characteristics of the drugs, the interaction between the drugs and the carriers, and the external environment all closely affect the drug delivery, release, and efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!