Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Steering capillary flow in textiles is of great significance in developing affordable and portable microfluidics devices. However, owing to the complex fibrous network, it remains a great challenge to achieve capillary flows with precise filling fronts. Here, an in situ laser engraving route is reported to accurately and rapidly etch textiles for manipulating capillary flow. The heterogeneity of the textile structure is enhanced because of the directional spreading of molten fibers polymer under the control of surface energy minimization. The principle of achieved anisotropic wicking of a water droplet in laser-engraved textiles is proposed. This understanding enables patterning the filling front of a fluid in different shapes, including arrow, straight line, diamond, and annulus. Precise capillary flow in textile-based microfluidics can benefit application in many fields, such as chemical analysis, biological detection, materials synthesis, multiliquid delivery. The laser engraving strategy has the advantages of simplicity, full scalability, and time rapidity, which provides an efficient avenue to steer capillary flow in diverse textiles for manufacturing customized microfluidic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c03988 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!