Low Operating Voltage Carbon-Graphene Hybrid E-textile for Temperature Sensing.

ACS Appl Mater Interfaces

College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, EX4 4QF Exeter, United Kingdom.

Published: July 2020

Graphene-coated polypropylene (PP) textile fibers are presented for their use as temperature sensors. These temperature sensors show a negative thermal coefficient of resistance (TCR) in a range between 30 and 45 °C with good sensitivity and reliability and can operate at voltages as low as 1 V. The analysis of the transient response of the temperature on resistance of different types of graphene produced by chemical vapor deposition (CVD) and shear exfoliation of graphite (SEG) shows that trilayer graphene (TLG) grown on copper by CVD displays better sensitivity due to the better thickness uniformity of the film and that carbon paste provides good contact for the measurements. Along with high sensitivity, TLG on PP shows not only the best response but also better transparency, mechanical stability, and washability compared to SEG. Temperature-dependent Raman analysis reveals that the temperature has no significant effect on the peak frequency of PP and expected effect on graphene in the demonstrated temperature range. The presented results demonstrate that these flexible, lightweight temperature sensors based on TLG with a negative TCR can be easily integrated in fabrics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c08397DOI Listing

Publication Analysis

Top Keywords

temperature sensors
12
temperature
7
low operating
4
operating voltage
4
voltage carbon-graphene
4
carbon-graphene hybrid
4
hybrid e-textile
4
e-textile temperature
4
temperature sensing
4
sensing graphene-coated
4

Similar Publications

Zinc tin oxide (ZTO) is investigated as a photoluminescent sensor for oxygen (O2); chemisorbed oxygen quenches the luminescence intensity. At the same time, ZTO is also studied as a resistive sensor; being an n-type semiconductor, its electrical conductance decreases by adsorption of oxygen. Both phenomena can be exploited for quantitative O2 sensing.

View Article and Find Full Text PDF

Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors.

Mater Horiz

January 2025

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.

Flexible hydrogel sensors have found extensive applications. However, the insufficient sensing sensitivity and the propensity to freeze at low temperatures restrict their use, particularly in frigid conditions. Herein, a multifunctional eutectogel with high transparency, anti-freezing, anti-swelling, adhesive, and self-healing properties is prepared by a one-step photopolymerization of acrylic acid and lauryl methacrylate in a binary solvent comprising water and deep eutectic solvent (DES).

View Article and Find Full Text PDF

Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions.

View Article and Find Full Text PDF

A mononuclear iron(II) complex constructed using a complementary ligand pair exhibits intrinsic luminescence-spin-crossover coupling.

Dalton Trans

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.

Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).

View Article and Find Full Text PDF

Ultrahigh Selectivity HS Gas Sensor Based CsPbBr Perovskites via Pb-S Bonding Interaction.

ACS Sens

January 2025

State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China.

High selectivity and sensitivity sensing of HS gas play a decisive role in the early detection of sulfide solid-state battery failure. Herein, we construct the CsPbBr perovskite-based sensor that exhibits outstanding gas-sensing performance to HS at room temperature, including high selectivity, fast response/recovery speed (73.5/275.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!