Background: Pyrethroids are classified as type I and type II for distinct symptomology. Voltage-gated sodium channel is a primary target of pyrethroids. Mutations of the insect sodium channel have been identified to result in resistance to pyrethroids. Double mutation (L F/M I) was detected in field-strain of Apolygus lucorum (Meyer-Dür). Although, it was illuminated the function of the same position mutation in other pests, it is necessary to demonstrate the role in A. lucorum .

Results: In this study, we examined the effects of mutations on channel gating and pyrethroid sensitivity in Xenopus oocytes. L F, M I and L F/M I all shifted the voltage dependence of activation in the depolarizing direction. L F, M I and L F/M I all reduced the amplitude of tail currents induced by type I (bifenthrin and permethrin) and type II (λ-cyhalothrin and deltamethrin). The double mutation, L F/M I, reduced integral channel modification by 10-fold compared with the L F and M I mutations alone, respectively. Computational analysis based on the model of dual pyrethroid receptors, the two resistance mutations, L F and M I are facing two opposite sides of this newly identified pocket. Both mutations affect the optimal binding of the ligands by changing the shape of the pocket but in different ways.

Conclusion: Our results illustrate the distinct effect of mutations on pyrethroids. It is predicted with computer modeling that these mutations allosterically affect pyrethroid binding. © 2020 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.5944DOI Listing

Publication Analysis

Top Keywords

sodium channel
12
apolygus lucorum
8
double mutation
8
mutation f/m
8
f/m reduced
8
mutations
7
channel
5
classic mutations
4
mutations linker-helix
4
linker-helix iil45
4

Similar Publications

Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na) and potassium ion (K) channels is significantly correlated with the sensitivity of chemotherapy drugs.

View Article and Find Full Text PDF

Ion channels play a crucial role in cardiac functions, and their activities exhibit dynamic changes during heart development. However, the precise function of ion channels in human heart development remains elusive. In this study, we utilized human embryonic stem cells (hESCs) as a model to mimic the process of human embryonic heart development.

View Article and Find Full Text PDF

Heat sensation is mediated by specialized heat-sensitive neurons in the somatosensory system that innervates the skin. Previous studies revealed that noxious heat sensation is controlled by the sodium (Na)-activated potassium (K) channel Slick (Kcnt2), which is highly expressed in nociceptive Aδ-fibers. However, the mechanism by which Slick modulates heat sensation is poorly understood.

View Article and Find Full Text PDF

Sodium channels in non-excitable cells: powerful actions and therapeutic targets beyond Hodgkin and Huxley.

Trends Cell Biol

December 2024

Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA. Electronic address:

Voltage-gated sodium channels (VGSCs) are best known for their role in the generation and propagation of action potentials in neurons, muscle cells, and cardiac myocytes, which have traditionally been labeled as 'excitable'. However, emerging evidence challenges this traditional perspective. It is now clear that VGSCs are also expressed in a broad spectrum of cells outside the neuromuscular realm, where they regulate diverse cellular functions.

View Article and Find Full Text PDF

Rapid and reversible sodium-ion cathode materials for NASICON NaMnTiPBO achieved through Boron-substitution.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, State Key Lab of Silicon and Advanced, Semiconductor Materials, Zhejiang University, Hangzhou 310027, PR China. Electronic address:

NaMnTi(PO) is a promising sodium-ion cathode material due to its relatively high specific capacity, excellent thermodynamic stability and low cost. However, unfavorable electron conductivity and slow kinetics limit its practical application. Here, a strategy of hetero and multivalent anion substitution is proposed to achieve high-rate performance and good capacity retention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!