AI Article Synopsis

  • * Male rats produce more 50-kHz ultrasonic vocalizations (USV), which are linked to the enjoyment of play; females show reduced USV during play interactions.
  • * The gene Cacna1c influences these differences, with its reduced expression in females leading to changes in USV patterns and suggesting a connection to conditions like autism.

Article Abstract

Sexual dimorphisms are widespread in the animal kingdom. At the behavioral level, there is evidence for sex differences in social play behavior. In rats, males typically engage more in rough-and-tumble play than females. One prominent component of the rough-and-tumble play repertoire in rats is the emission of 50-kHz ultrasonic vocalizations (USV). Such 50-kHz USV reflect the rewarding nature of play and serve as socioaffective signals. Here, we provide evidence for sexual dimorphisms within rough-and-tumble play-induced 50-kHz USV in juvenile rats. Specifically, females displayed reduced 50-kHz USV emission during playful interactions. This reduction was associated with changes in 50-kHz USV emission rates and subtype profiles during specific rough-and-tumble components, i.e., pinning, wrestling, and chasing, as well as differences in acoustic parameters. Interestingly, sex differences were modulated by Cacna1c, a gene strongly implicated in major neuropsychiatric disorders, often characterized by prominent sex biases, most notably autism. Specifically, Cacna1c haploinsufficiency affected the emission of 50-kHz USV during rough-and-tumble play in female rats and we provide evidence supporting the notion that such effects of Cacna1c haploinsufficiency are driven by male-typical features of 50-kHz USV emission. This is in line with the hypermasculinized social play repertoire previously observed in juvenile Cacna1c haploinsufficient females.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dev.21998DOI Listing

Publication Analysis

Top Keywords

50-khz usv
24
sex differences
12
rough-and-tumble play
12
usv emission
12
differences acoustic
8
50-khz
8
play-induced 50-khz
8
50-khz ultrasonic
8
ultrasonic vocalizations
8
cacna1c haploinsufficient
8

Similar Publications

Ultrasonic vocalisations in the Flinders Sensitive Line rat, a genetic animal model of depression.

Acta Neuropsychiatr

January 2025

Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.

Objective: Ultrasonic vocalisations (USVs) emitted by rats may reflect affective states. Specifically, 50 kHz calls emitted during juvenile playing are associated with positive affect. Given that depression is characterised by profound alterations in this domain, we proposed that USV calls may configure a suitable tool for assessing depressive-like states.

View Article and Find Full Text PDF

Objectives: This study is to assess how 22 kHz and 50 kHz spontaneous ultrasound vocalization (USV) calls would be affected by different origins of pain so as to validate the use of USV in pain studies.

Methods: Five well-established rat models of pain were used to evaluate various parameters of spontaneous 22 kHz and 50 kHz calls in adult male rats in terms of both acute and chronic or inflammatory and neuropathic or somatic and visceral origins. The effects of local lidocaine blockade of the injection site and intraperitoneal administration of antidepressant (amitriptyline) and anticonvulsant (gabapentin) were examined as well in typical inflammatory and neuropathic pain models, respectively.

View Article and Find Full Text PDF

22 and 50 kHz rat ultrasonic vocalization playback reveals sex differences in behavior and cFos in brain regions associated with affective processing.

Behav Brain Res

February 2025

Research in Affective and Translational Neuroscience Laboratory, Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME 04011 USA, USA. Electronic address:

Adult rats communicate using ultrasonic vocalization (USV) frequencies indicating negative (22 kHz) or positive (50 kHz) affective states. Playback of USVs can serve as an ethologically translational method to study affective processing in response to socially communicated states. However, few studies have examined behavioral and neural effects of USV playback in both male and female rats.

View Article and Find Full Text PDF

Behavioural response of female Lewis rats toward 31-kHz ultrasonic calls.

Behav Processes

November 2024

Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Japan.

Rodent ultrasonic vocalisations can be used to assess social behaviour and have attracted increasing attention. Rats emit 50-kHz and 22-kHz calls during appetitive and aversive states, respectively. These calls induce behavioural and neural responses in the receiver by transmitting the internal states of the rats, thus serving communicative functions.

View Article and Find Full Text PDF

Altered vocal communication in adult vasopressin-deficient Brattleboro rats.

Physiol Behav

December 2024

Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA; Neuroscience Program, University at Buffalo SUNY, Buffalo, NY, USA; Evolution, Ecology, and Behavior Program, University at Buffalo SUNY, NY, USA. Electronic address:

The neuropeptide, arginine vasopressin (AVP), has been implicated in social communication across a diverse array of species. Many rodents communicate basic behavioral states with negative versus positive valence through high-pitched vocalizations above the human hearing range (ultrasonic vocalizations; USVs). Previous studies have found that Brattleboro (Bratt) rats, which have a mutation in the Avp gene, exhibit deficits in their USVs from the early postnatal period through adolescence, but the magnitude of this effect appears to decrease from the juvenile to adolescent phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!