Background: Diabetes mellitus (DM) has been shown to increase the risk of Alzheimer's disease (AD). Downregulation of selective Alzheimer's disease indicator-1 (seladin-1) occurs in the cerebral regions affected by AD. However, inconsistent results have been reported for the relationship between seladin-1 levels and AD. The effect of DM on serum seladin-1 levels in AD is unknown. The present study is aimed to investigate serum seladin-1 levels in diabetic and non-diabetic patients with AD.

Methods: Forty-six patients with AD and 25 healthy volunteers over 65 years of age were included in this study. The patients were divided into three groups-those with AD only, those with DM and AD, and control groups. Demographic characteristics and serum seladin-1 levels were compared among the groups.

Results: There was no statistically significant difference in seladin-1 levels in the AD only group compared to the control group (p = 0.376). However, seladin-1 levels were significantly lower in the DM and AD group compared to the AD only and control groups (p = 0.002, p = 0.001; respectively). Negative correlations were present between seladin-1 and fasting glucose, postprandial glucose, HbA1c, and insulin (p < 0.05; all).

Conclusion: Decreased serum seladin-1 values in the presence of DM and inverse correlations with diabetic parameters in patients with AD, together with a non-significant difference from the control group, suggests that seladin-1 may be altered only in the presence of DM in patients with AD. Lower serum seladin-1 levels may also play a role in the pathogenesis of AD in patients with DM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13760-020-01393-4DOI Listing

Publication Analysis

Top Keywords

seladin-1 levels
28
serum seladin-1
16
alzheimer's disease
12
diabetes mellitus
8
seladin-1
8
control groups
8
group compared
8
compared control
8
levels
7
serum
4

Similar Publications

Methamphetamine (MA) induces neurocognitive effects via several mechanisms. In the present study, we investigated the alteration of thyroid hormone receptor's expression in the context of MA-induced memory impairment and explored the protective effects of exogenous thyroid hormones (THs). Male wistar rats, received increasing regimen of MA (1-10 mg/kg, intraperitoneal, twice a day for 10 days), were treated with T3 (40 μg/rat/day; intranasal, 2.

View Article and Find Full Text PDF

Osteoblasts impair cholesterol synthesis in chondrocytes via Notch1 signalling.

Cell Prolif

December 2021

State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Objectives: Previous reports have proposed the importance of signalling and material exchange between cartilage and subchondral bone. However, the specific experimental evidence is still insufficient to support the effect of this interdependent relationship on mutual cell behaviours. In this study, we aimed to investigate cellular lipid metabolism in chondrocytes induced by osteoblasts.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) has been shown to increase the risk of Alzheimer's disease (AD). Downregulation of selective Alzheimer's disease indicator-1 (seladin-1) occurs in the cerebral regions affected by AD. However, inconsistent results have been reported for the relationship between seladin-1 levels and AD.

View Article and Find Full Text PDF

Aromatase and seladin-1 are enzymes that have major roles in estrogen synthesis and are important in both brain physiology and pathology. Aromatase is the key enzyme that catalyzes estrogen biosynthesis from androgen precursors and regulates the brain's neurosteroidogenic activity. Seladin-1 is the enzyme that catalyzes the last step in the biosynthesis of cholesterol, the precursor of all hormones, from desmosterol.

View Article and Find Full Text PDF

Neuronal apoptosis and impaired hippocampal neurogenesis are major players in cognitive/memory dysfunctions including Alzheimer's disease (AD). Interferon beta (IFNβ) is a cytokine with anti-apoptotic and neuroprotective properties on the central nervous system (CNS) cells which specifically affects neural progenitor cells (NPCs) even in the adult brain. In this study, we examined the effect of IFNβ on memory impairment as well as hippocampal neurogenesis and apoptosis in a rat model of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!