Groundwater safe yield powered by clean wind energy.

Environ Monit Assess

Department of Geography, University of California, Santa Barbara, CA, USA.

Published: June 2020

Wind energy has been used by humans for thousands of years. Yet, the relatively low economic cost and availability of fossil fuels upstaged the use of wind power. Fossil fuel resources are not renewable and will decline until exhaustion in the future. At the same time, humans have become aware of the adverse effects on the environment caused by reliance on fossil fuel energy. Wind, on the other hand, is a renewable energy source with minimal adverse environmental impacts that does not involve greenhouse gas emissions. Agricultural irrigation systems use fossil fuel energy resources in various forms. Groundwater withdrawal is central to supplying agricultural water demand in arid and semi-arid regions. Such withdrawal is mostly based on water extraction with pumps powered by diesel, gasoline, or electricity (which is commonly produced by fossil fuels). This paper coupled the non-sorted genetic algorithm (NSGA-II) as the optimization tool to the mathematical formulation of the wind-powered groundwater production problem to determine the potential of wind energy for groundwater withdrawal in an arid area. The optimal safe yield and the optimal size of regulation reservoir are determined considering two objectives: (1) maximizing total extraction of groundwater and (2) minimizing the cost of reservoir construction. The safe yield and the two objectives are optimized for periods lasting 1, 2, 3, 4, and 6 months over a 1-year planning horizon. This paper's methodology is evaluated with groundwater and wind-power data pertinent to Eghlid, Iran. The optimal safe yield increases by increasing the period length. Specifically, increasing the period length from 1 to 6 months increases the safe yield from 12 to 29 m. Application of the proposed NSGA-II-based optimization of groundwater production identifies the best design and operational variables with computational efficiency and accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-020-08372-5DOI Listing

Publication Analysis

Top Keywords

safe yield
20
wind energy
12
fossil fuel
12
energy wind
8
fossil fuels
8
fuel energy
8
groundwater withdrawal
8
groundwater production
8
optimal safe
8
increasing period
8

Similar Publications

Background And Aims: Vedolizumab is s gut-selective advanced therapy that is safe and efficacious for the treatment of ulcerative colitis (UC). Once patients achieve successful induction, there is a risk of loss of response leading to eventual flare. We aimed to identify these predictive factors and develop a practical scoring system to determine the ongoing efficacy of vedolizumab.

View Article and Find Full Text PDF

Introduction: Non-steroidal anti-inflammatory drugs are associated with severe gastrointestinal irritation upon prolonged use, largely due to their carboxylic (-- COOH) functional group.

Aim: To address this issue, we aimed to synthesize diclofenac conjugates with glucosamine and chitosan, converting the -COOH group into an amide (-CONH-) via a mechanochemical, environmentally friendly method.

Method: In this study, diclofenac acid was first converted to its acid chloride using thionyl chloride under mechanochemical conditions and subsequently reacted with glucosamine base and chitosan.

View Article and Find Full Text PDF

Background And Purpose: Endovascular thrombectomy (EVT) for acute ischemic stroke (AIS) with M2 segment occlusion of the middle cerebral artery (MCA) is debatable. This study assessed the efficacy, safety, and functional outcomes of EVT in M2 occlusion patients, examining differences in outcomes based on the dominance of the occluded segment (DomM2 vs. Non-DomM2).

View Article and Find Full Text PDF

Quinoline: A Novel Solution for Next-Generation Pesticides, Herbicides, and Fertilizers.

Appl Biochem Biotechnol

January 2025

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China.

Quinoline is a nitrogen-containing heterocycle compound widely used in the medical industry for its pharmacological properties, such as its antimalarial, antimicrobial, antiparasitic, anti-inflammatory, and anticancer activities. Beyond its medical significance, quinoline shows promising applications in agriculture as a safe and effective pesticide, herbicide, and fertilizer. This review explores the evolution of quinoline research, beginning with its history and synthesis and transitioning to its biological activities and their relevance in agriculture.

View Article and Find Full Text PDF

Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production.

Microb Cell Fact

January 2025

Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea.

Background: 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!