Background: Metals can disturb the integrity of physiological and biochemical mechanisms in fish. Thus components of defense as an antioxidant system are significant biomarkers due to their vital role in coping with metal stress. The aim of the current study is to investigate the direct effects of Cd, Cu, and Zn sublethal exposures (in vitro) on the antioxidant system parameters in the liver and kidney of Nile tilapia.
Methods: The antioxidant enzyme activities and GSH levels were analyzed after in vitro sublethal metal (200 and 400 μg/L Cd, Cu, and Zn) treatments of Oreochromis niloticus liver and kidney supernatants.
Results: Metals even at lower levels caused significant changes in the levels of antioxidant system parameters due to concentration, metal, and tissue type. GSH metabolism parameters were more responsive to the metal effect. TBARS levels and GPX activity were mostly increased while CAT, SOD, rGSH, and GSH/GSSG levels decreased. The kidney was more affected than the liver in vitro conditions. Cu was more effective in the liver whereas it was Zn for the kidney. Cd caused negative correlations among the antioxidant enzymes. Significant correlations were found between enzymes and GSH levels upon Zn and Cu exposures.
Conclusions: Direct metal effects may trigger different response trends due to their nature and tissue differences. The current data provide a knowledge about which antioxidant biomarkers can define better the oxidative stress caused by direct metal effect for further studies including in vivo experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2020.126567 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!