AI Article Synopsis

  • Harmful algal blooms (HABs) negatively impact wildlife, human health, and drinking water quality, making it crucial to understand their drivers and impacts.
  • The study uses machine learning to analyze 14 years of water quality and meteorological data from China's lakes and reservoirs, aiming to predict chlorophyll a concentrations and assess HAB magnitudes.
  • Findings reveal a decreasing trend in HAB extent from 2006 to 2013, followed by a slight increase until 2018, with key lakes showing strong ties to nutrient levels, suggesting that effective management requires reducing both nitrogen and phosphorus concentrations.

Article Abstract

Harmful algal blooms (HABs) can have dire repercussions on aquatic wildlife and human health, and may negatively affect recreational uses, aesthetics, taste, and odor in drinking water. The factors that influence the occurrence and magnitude of harmful algal blooms and toxin production remain poorly understood and can vary in space and time. It is within this context that we use machine learning (ML) and two 14-year (2005-2018) data sets on water quality and meteorological conditions of China's lakes and reservoirs to shed light on the magnitude and associated drivers of HAB events. General regression neural network (GRNN) models are developed to predict chlorophyll a concentrations for each lake and reservoir during two study periods (2005-2010 and 2011-2018). The developed models with an acceptable model fit are then analyzed by two indices to determine the areal HAB magnitudes and associated drivers. Our national assessment suggests that HAB magnitudes for China's lakes and reservoirs displayed a decreasing trend from 2006 (1363.3 km) to 2013 (665.2 km), and a slightly increasing trend from 2013 to 2018 (775.4 km). Among the 142 studied lakes and reservoirs, most severe HABs were found in Lakes Taihu, Dianchi and Chaohu with their contribution to the total HAB magnitude varying from 89.2% (2013) to 62.6% (2018). HABs in Lakes Taihu and Chaohu were strongly associated with both total phosphorus and nitrogen concentrations, while our results were inconclusive with respect to the predominant environmental factors shaping the eutrophication phenomena in Lake Dianchi. The present study provides evidence that effective HAB mitigation may require both nitrogen and phosphorus reductions and longer recovery times; especially in view of the current climate-change projections. ML represents a robust strategy to elucidate water quality patterns in lakes, where the available information is sufficient to train the constructed algorithms. Our mapping of HAB magnitudes and associated environmental/meteorological drivers can help managers to delineate hot-spots at a national scale, and comprehensively design the best management practices for mitigating the eutrophication severity in China's lakes and reservoirs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.115902DOI Listing

Publication Analysis

Top Keywords

lakes reservoirs
20
china's lakes
16
harmful algal
12
algal blooms
12
hab magnitudes
12
lakes
8
water quality
8
associated drivers
8
magnitudes associated
8
habs lakes
8

Similar Publications

Aquaculture source of atmospheric NO in China: Comparison of system types, management practices and measurement methods.

Environ Res

December 2024

School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China. Electronic address:

Aquaculture systems contribute to atmospheric NO, but the magnitude of this NO source is largely uncertain. Here, we synthesized data from 139 aquaculture sites based on 59 peer-reviewed publications, and estimated that China's aquaculture systems emitted 9.68 Gg N yr (4.

View Article and Find Full Text PDF

Geographical Distribution Dynamics of in China Under Climate Change.

Plants (Basel)

November 2024

Zhejiang Academy of Forestry, Hangzhou 310023, China.

, a perennial emergent herb, is highly valued for its ornamental appeal, water purification ability, and medicinal properties. However, there is a significant contradiction between the rapidly increasing demand for and the diminishing wild resources. Understanding its geographical distribution and the influence of global climate change on its geographical distribution is imperative for establishing a theoretical framework for the conservation of natural resources and the expansion of its cultivation.

View Article and Find Full Text PDF

How efficient are pre-dams as reservoir guardians? A long-term study on nutrient retention.

Water Res

November 2024

Department of Lake Research, Helmholtz Center for Environmental Research - UFZ, Brückstraße 3A, 39114 Magdeburg, Germany; Faculty Environment and Natural Sciences, Brandenburg University of Technology, Cottbus, Germany. Electronic address:

Assessing nutrient loading and processing is crucial for water quality management in lakes and reservoirs. Quantifying and reducing external nutrient inputs in these systems remains a significant challenge. The difficulty arises from low monitoring frequencies of the highly dynamic external inputs and the limited availability of measures to reduce diffuse source loading.

View Article and Find Full Text PDF

The accumulation of excessive nitrogen, phosphorus, and other nutrients in rivers, lakes, and reservoirs has greatly accelerated eutrophication, which has led to the frequent outbreaks of algal blooms and brought great ecological risks to the related aquatic ecosystems. Evaluations on the eutrophic status of water bodies and estimations of water environment capacity are not only crucial for comprehensive assessment of eutrophic status but also indispensable references for comprehensive management of the aquatic ecosystems. In this study, major environmental variables (chemical oxygen demand, total nitrogen, and total phosphorus) of Yankou Reservoir watershed were monitored monthly from May 2020 to March 2022 and based upon the determined results, the comprehensive eutrophic conditions and water environment capacity were evaluated and estimated.

View Article and Find Full Text PDF

Vertical profiles of community and activity of methanotrophs in large lake and reservoir of Southwest China.

Sci Total Environ

December 2024

State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China. Electronic address:

Microbial methane oxidation plays a significant role in regulating methane emissions from lakes and reservoirs. However, the differences in methane oxidation activity and methanotrophic community between lakes and reservoirs remain inadequately characterized. In this study, sediment and water samples were collected from the large shallow lake (Dianchi) and deep reservoirs (Dongfeng and Hongjiadu) located in karst area, Southwest China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!