A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-retinotopic adaptive center-surround modulation in motion processing. | LitMetric

Non-retinotopic adaptive center-surround modulation in motion processing.

Vision Res

Perceptual and Cognitive Dynamics Laboratory, Department of Electrical & Computer Engineering, University of Denver, Denver, CO 80208, USA. Electronic address:

Published: September 2020

The early visual system is organized retinotopically. However, under ecological viewing conditions, motion perception occurs in non-retinotopic coordinates. Even though many studies revealed the central role of non-retinotopic processes, very little is known about their mechanisms and neural correlates. Tadin and colleagues found that increasing the spatial size of a high-contrast drifting-Gabor deteriorates motion-direction discrimination, whereas the opposite occurs with a low-contrast stimulus. The results were proposed to reflect an adaptive center-surround antagonism, whereby at low-contrast the excitatory center dominates whereas at high-contrast suppressive-surround mechanisms become more effective. Because ecological vision is non-retinotopic, we tested the hypothesis that the non-retinotopic system also processes motion information by means of an adaptive center-surround mechanism. We used the Ternus-Pikler display designed to provide either a retinotopic or a non-retinotopic reference-frame. Our results suggest that the non-retinotopic processes underlying motion perception are also mediated by an adaptive center-surround mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2020.05.007DOI Listing

Publication Analysis

Top Keywords

adaptive center-surround
16
motion perception
8
non-retinotopic processes
8
center-surround mechanism
8
non-retinotopic
7
non-retinotopic adaptive
4
center-surround
4
center-surround modulation
4
motion
4
modulation motion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!