Phantom bursting may underlie electrical bursting in single pancreatic β-cells.

J Theor Biol

Florida State University, Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Tallahassee, FL, United States.

Published: September 2020

Insulin is secreted by pancreatic β-cellsthat are electrically coupled into micro-organs called islets of Langerhans. The secretion is due to the influx of Caions that accompany electrical impulses, which are clustered into bursts. So-called "medium bursting" occurs in many β-cellsin intact islets, while in other islets the β-cellsexhibit "slow bursting", with a much longer period. Each burst brings in Ca that, through exocytosis, results in insulin secretion. When isolated from an islet, β-cellsbehave very differently. The electrical activity is much noisier, and consists primarily of trains of irregularly-timed spikes, or fast or slow bursting. Medium bursting, so often seen in intact islets, is rarely if ever observed. In this study, we examine what the isolated cell behavior can tell us about the mechanism for bursting in intact islets. A previous mathematical study concluded that the slow bursting observed in isolated β-cells, and therefore most likely in islets, must be due to intrinsic glycolytic oscillations, since this mechanism for bursting is robust to noise. It was demonstrated that an alternate mechanism, phantom bursting, was very sensitive to noise, and therefore could not account for the slow bursting in single cells. We re-examine these conclusions, motivated by recent experimental and mathematical modeling evidence that slow bursting in intact islets is, at least in many cases, driven by the phantom bursting mechanism and not endogenous glycolytic oscillations. We employ two phantom bursting models, one minimal and the other more biophysical, to determine the sensitivity of medium and slow bursting to electrical current noise. In the minimal model, both forms of bursting are highly sensitive to noise. In the biophysical model, while medium bursting is sensitive to noise, slow bursting is much less sensitive. This suggests that the slow bursting seen in isolated β-cellsmay be due to a phantom bursting mechanism, and by extension, slow bursting in intact islets may also be driven by this mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2020.110346DOI Listing

Publication Analysis

Top Keywords

slow bursting
32
phantom bursting
20
intact islets
20
bursting
18
bursting intact
16
bursting sensitive
12
sensitive noise
12
bursting single
8
islets
8
slow
8

Similar Publications

Background/objectives: This study aimed to develop a novel nanotechnological slow-release drug delivery platform based on hyaluronic acid Microsponge (MSP) for the subcutaneous administration of methotrexate (MTX) in the treatment of rheumatoid arthritis (RA). RA is a chronic autoimmune disease characterized by joint inflammation and damage, while MTX is a common disease-modifying antirheumatic drug (DMARD), the conventional use of which is limited by adverse effects and the lack of release control.

Methods: MSP were synthesized as freeze-dried powder to increase their stability and allow for a facile reconstitution prior to administration and precise MTX dosing.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, SKS1 mRNA encoding a glucose-sensing serine/threonine kinase belongs to "nucleus-retained" (NR) mRNAs representing a subset of otherwise normal transcripts, which exhibits slow nuclear export and excessively long nuclear dwell time. Nuclear retention of the SKS1 mRNA triggered by a 202 nt "export-retarding" nuclear zip code (NZ) element promotes its rapid degradation in the nucleus by the nuclear exosome/CTEXT. In this investigation, we demonstrate that Dbp2p, an ATP-dependent DEAD-box RNA helicase binds to SKS1 and other NR-mRNAs and thereby inhibits their export by antagonizing with the binding of the export factors Mex67p/Yra1p.

View Article and Find Full Text PDF

Affected by weakening effect of water in the goaf, the bearing capacity of coal pillar reduced, and coal pillar rock burst is prone to occur, which is a serious threat to mine safety in production. In order to study the equivalent width and stability of coal pillar in water-rich coal seam, taking the section coal pillar of a working face as the research object, combined with laboratory test, theoretical analysis, simulation and engineering practice, the stress, elastic core area width, damage degree and energy accumulation of 36 m water-immersed coal pillar and 26 m, 28 m, 30 m, 32 m, 36 m unimmersed coal pillars are analyzed. The research results show that: (1) The reasonable width of coal pillar under flooded and unflooded conditions is 36.

View Article and Find Full Text PDF

Zebra finches undergo a gradual refinement of their vocalizations, transitioning from variable juvenile songs to the stereotyped song of adulthood. To investigate the neural mechanisms underlying song crystallization-a critical phase in this developmental process-we performed intracellular recordings in HVC (a premotor nucleus essential for song learning and production) of juvenile birds. We then compared these recordings to previously published electrophysiological data from adult birds.

View Article and Find Full Text PDF

Ocular drug-delivery is one of the most challenging areas owing to nature of ocular tissues. Various nanoformulations have been designed and investigated for drug-delivery to achieve high drug bioavailability. The major focus of these preparations available in market is to utilize nanomaterial as drug-carrier only, with less focus on developing functional-nanomaterials, which is a key knowledge gap in the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!