A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plant catalases as NO and HS targets. | LitMetric

Plant catalases as NO and HS targets.

Redox Biol

Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain.

Published: July 2020

Catalase is a powerful antioxidant metalloenzyme located in peroxisomes which also plays a central role in signaling processes under physiological and adverse situations. Whereas animals contain a single catalase gene, in plants this enzyme is encoded by a multigene family providing multiple isoenzymes whose number varies depending on the species, and their expression is regulated according to their tissue/organ distribution and the environmental conditions. This enzyme can be modulated by reactive oxygen and nitrogen species (ROS/RNS) as well as by hydrogen sulfide (HS). Catalase is the major protein undergoing Tyr-nitration [post-translational modification (PTM) promoted by RNS] during fruit ripening, but the enzyme from diverse sources is also susceptible to undergo other activity-modifying PTMs. Data on S-nitrosation and persulfidation of catalase from different plant origins are given and compared here with results from obese children where S-nitrosation of catalase occurs. The cysteine residues prone to be S-nitrosated in catalase from plants and from bovine liver have been identified. These evidences assign to peroxisomes a crucial statement in the signaling crossroads among relevant molecules (NO and HS), since catalase is allocated in these organelles. This review depicts a scenario where the regulation of catalase through PTMs, especially S-nitrosation and persulfidation, is highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276441PMC
http://dx.doi.org/10.1016/j.redox.2020.101525DOI Listing

Publication Analysis

Top Keywords

catalase
8
s-nitrosation persulfidation
8
plant catalases
4
catalases targets
4
targets catalase
4
catalase powerful
4
powerful antioxidant
4
antioxidant metalloenzyme
4
metalloenzyme located
4
located peroxisomes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!