A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomimetic nano-NOS mediated local NO release for inhibiting cancer-associated platelet activation and disrupting tumor vascular barriers. | LitMetric

Biomimetic nano-NOS mediated local NO release for inhibiting cancer-associated platelet activation and disrupting tumor vascular barriers.

Biomaterials

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China.

Published: October 2020

Platelets attribute to the hypercoagulation of blood and maintenance of the tumor vascular integrity, resulting in limited intratumoral perfusion of nanoparticle into solid tumors. To overcome these adversities, we herein present an antiplatelet strategy based on erythrocyte membrane-enveloped proteinic nanoparticles that biomimic nitric oxide synthase (NOS)with co-loading of l-Arginine (LA) and photosensitizer IR783 for local NO release and inhibition of the activation of tumor-associated platelets specifically, thereby enhancing vascular permeability and accumulation of the nanoparticles in tumors. A cRGD-immobolized membrane structure is constructed to actively target platelets and cancer cells respectively, through overexpressed integrin receptors such as integrin αβ and αβ, accelerating the inhibition of platelet activation and endocytosis of nanoparticles by tumor cells. Bio-mimicking the arginine/NO pathway in vivo, synergistical delivery of LA and IR783 enables LA molecules readily oxidize to NO with O that is mediated by activated IR783, the resulted NO not only retards the activity of platelets to disrupt the vascular integrity of tumor but also enhances toxicity to cancer cells. In addition, NIR-controlled release localizes the NO spatiotemporally to tumor-associated platelets and prevents undesirable systemic bleeding substantially. The reduction of the hypercoagulable state is further demonstrated by the down-regulation of tissues factor (TF) expression in tumor cells. Our study describes a promising approach to combat cancer, which advances the biomimetic NOS system as the potent therapeutic forces toward clinic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2020.120141DOI Listing

Publication Analysis

Top Keywords

local release
8
platelet activation
8
tumor vascular
8
vascular integrity
8
tumor-associated platelets
8
cancer cells
8
tumor cells
8
tumor
5
platelets
5
biomimetic nano-nos
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!