Femoropopliteal arteries (FPAs) are subjected to a wide range of deformations, mainly determined by leg movement. FPAs are often affected by atherosclerotic plaque development, presumably influenced by the biomechanics of surrounding tissues. Although abnormal hemodynamics in FPAs appears to be an important factor in driving plaque development, to date it has been investigated in few studies, in which the leg was modeled in either fixed straight or bent configuration. Hence, the current work investigates the impact of leg movement on FPA hemodynamics. An idealized model of FPA was created to perform moving-boundary computational fluid dynamics analyses. By mimicking hip rotation, knee flexion and complete movement of walking, the hemodynamics was compared between moving- and fixed-boundary models. Moreover, additional features affecting the hemodynamics (e.g. flow-rate curve amplitude, walking speed) were examined. Significant hemodynamic differences were found between the moving- and fixed-boundary models, with the leg movement inducing higher time-averaged wall shear stress (TAWSS) (up to 66%). The flow-rate amplitude and walking period were the most influential parameters (differences in TAWSS up to 68% and 74%, respectively). In conclusion, this numerical approach highlighted the importance of considering leg movement to investigate FPA hemodynamics, and it could be employed in future patient-specific analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2020.05.004 | DOI Listing |
Alzheimers Dement
December 2024
University of Miami Miller School of Medicine, Boca Raton, FL, USA.
Background: Gait and balance deficiencies may be important indicators of cognitive impairment, distinguishing dementia from normal cognition (NC). It is unclear whether this extends to pre-dementia stages of disease. Study goals were to: assess patterns of mobility across early stages of disease and identify specific measures that distinguish individuals with subjective cognitive impairment (SCI) and mild cognitive impairment (MCI).
View Article and Find Full Text PDFFront Sports Act Living
December 2024
Department of Sport Science, Human Performance Research Centre, University of Konstanz, Konstanz, Germany.
Background: The physical and mental demands of handball during training or competition often lead to fatigue which can impair performance. Many attempts have been made to assess the level of fatigue in athletes either by objective (neuromuscular performance) or subjective (questionnaires) measures, however, their interplay over short-, mid-, and long-term periods is currently unknown. Knowledge about both types of assessments is important as load management by coaches is traditionally based on direct adjustments following a training session, adjustments of content structure of training weeks between games, as well as adjustments of load management over the entire competitive season.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte, CEP 31270-901, MG, Brazil.
People with peripheral arterial disease (PAD) and intermittent claudication (IC) experience impaired walking due to an imbalance between muscle oxygen supply and demand during exercise. Studies with near-infrared spectroscopy (NIRS) during treadmill tests reveal notable tissue deoxygenation with slow recovery. This cross-sectional study aimed to compare behavior of calf muscle oxygenation during the incremental shuttle walking test (ISWT) with a continuous treadmill test (3.
View Article and Find Full Text PDFPhys Ther Sport
December 2024
College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China. Electronic address:
Objectives: To investigate the effects of different directions of athletic taping on neuromuscular control of the lower limb in recreational athletes with Achilles tendinopathy (AT).
Design: Crossover Study.
Setting: Functional assessment laboratory.
Brain Behav
January 2025
Department of Biomedical Engineering, Meybod University, Meybod, Iran.
Purpose: A debilitating and poorly understood symptom of Parkinson's disease (PD) is freezing of gait (FoG), which increases the risk of falling. Clinical evaluations of FoG, relying on patients' subjective reports and manual examinations by specialists, are unreliable, and most detection methods are influenced by subject-specific factors.
Method: To address this, we developed a novel algorithm for detecting FoG events based on movement signals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!