The heat generated during orthopedic surgery can cause thermal damage to bone cells, leading to cell necrosis, death, and bone resorption. In this study, the drill-exit surface in cortical bone drilling was firstly investigated by infrared thermography to understand the thermal characteristics of bone cutting. In order to mimic the short-term thermal condition of high temperature during surgical cutting, the osteoblasts were exposed to heat shock for short periods of time to investigate the effect of cutting heat on the bone. Necrosis and apoptosis were investigated immediately after heat shock for 2 s, 5 s, and 15 s at 50 °C, 60 °C, 70 °C, and 80 °C, respectively. The cells were then incubated for 4 days at 37 °C and analyzed by fluorescein annexin V-FITC/PI double staining. The temperature and heat-duration were precisely controlled by a novel heating approach. In comparison to the control group (37 °C), immediate necrotic and apoptotic response to heat shock was found in cells exposed to 50 °C for 5 s (11.8%, p<0.05); however, the response was negligible in cells exposed to 50 °C for 2 s. In addition, recovery was found in the group exposed to 50 °C and 60 °C for 2 s (p ≤ 0.05) after incubation for 4 days. Cell damage depends on the magnitude and duration of heat exposure. These findings provide fundamental knowledge for future developments of surgical tool design and cutting methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2020.05.014 | DOI Listing |
Photosynthetica
January 2025
University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, 51100 Reims, France.
High temperatures severely affect plant growth and development leading to major yield losses. These temperatures are expected to increase further due to global warming, with longer and more frequent heat waves. Rhamnolipids (RLs) are known to protect several plants against various pathogens.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, Strasbourg F-67000, France.
The worldwide spread of antibiotic resistance is considered to be one of the major health threats to society. While developing new antibiotics is crucial, there is also a strong need for next-generation analytical methods for studying the physiological state of live bacteria in heterogeneous populations and their response to environmental stress. Here we report a single-cell high-throughput method to monitor changes in the bacterial cell envelope in response to stress based on ratiometric flow cytometry.
View Article and Find Full Text PDFBiol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFBMC Genomics
January 2025
Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.
Background: Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability.
View Article and Find Full Text PDFNat Commun
January 2025
Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!