Fabrication of polymer monoliths within the confines of non-transparent 3D-printed polymer housings.

J Chromatogr A

Van't Hoff Institute for Molecular Sciences, Science Park, University of Amsterdam 1098 HX Amsterdam, Netherlands; The Centre for Analytical Sciences Amsterdam (CASA), University of Amsterdam 1098 HX Amsterdam, Netherlands.

Published: July 2020

In the last decade, 3D-printing has emerged as a promising enabling technology in the field of analytical chemistry. Fused-deposition modelling (FDM) is a popular, low-cost and widely accessible technique. In this study, RPLC separations are achieved by in-situ fabrication of porous polymer monoliths, directly within the 3D-printed channels. Thermal polymerization was employed for the fabrication of monolithic columns in optically non-transparent column housings, 3D-printed using two different polypropylene materials. Both acrylate-based and polystyrene-based monoliths were created. Two approaches were used for monolith fabrication, viz. (i) in standard polypropylene (PP) a two-step process was developed, with a radical initiated wall-modification step 2,2'-azobis(2-methylpropionitrile) (AIBN) as the initiator, followed by a polymerization step to generate the monolith; (ii) for glass-reinforced PP (GPP) a silanization step or wall modification preceded the polymerization reaction. The success of wall attachment and the morphology of the monoliths were studied using scanning electron microscopy (SEM), and the permeability of the columns was studied in flow experiments. In both types of housings polystyrene-divinylbenzene (PS-DVB) monoliths were successfully fabricated with good wall attachment. Within the glass-reinforced polypropylene (GPP) printed housing, SEM pictures showed a radially homogenous monolithic structure. The feasibility of performing liquid-chromatographic separations in 3D-printed channels was demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2020.461159DOI Listing

Publication Analysis

Top Keywords

polymer monoliths
8
3d-printed channels
8
wall attachment
8
monoliths
5
fabrication
4
fabrication polymer
4
monoliths confines
4
confines non-transparent
4
3d-printed
4
non-transparent 3d-printed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!