Chiral stationary phases (CSPs) have always been research hotspot in enantiomer separation. Currently, most of the CSPs are based on silica platform. In this research, monodisperse, porous glycidyl methacrylate-divinylbenzene copolymer particles (poly(GMA-DVB)) were designed and prepared. Then the GMA was further reacted with ethylenediamine to introduce amino groups onto the polymer, which provide anchoring sites for cellulose derivatives. Herein, Cellulose-tris (3,5-dimethylphenylcarbamate) (CDMPC) was successfully coated onto the polymer microspheres, achieving a stable and successful CSP. The porous structure and the surface moieties of the CSPs were studied in detail. The chromatographic separation was optimized. Hexaconazole,methyl DL-mandelate,benzoin and tebuconazole have been successfully separated on the CSP column, with column efficiency as high as 10,200 plates/m, which is comparable with some silica-based CSPs. The research has indicated that the poly(GMA-DVB) is a promising candidate for constructing CSPs for chiral separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2020.461154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!