Photosynthesis in a Vanda sp orchid with Photosynthetic Roots.

J Plant Physiol

Tropical Plant Biology Unit, Faculty of Technology and Environment, Prince of Songkla University - Phuket, Kathu, Phuket 83120, Thailand. Electronic address:

Published: August 2020

PAM fluorometry showed that the orchid Vanda sp (Gaud ex Pfitzers, Vandeae) had photosynthetic electron transport yields in leaves reaching ≈ 0.617 ± 0.262 at midday. Yield decayed exponentially as irradiance increased (Y = 128 ± 12.4 μmol photon m s). Optimum irradiance (E) for ETR (Photosynthetic Electron Transport Rate) was ≈ 369 ± 23.3 μmol photon m s; the maximum photosynthetic ETR (ETR) (on a Chl a basis) ≈ 97.6 ± 3.76 μmol eg Chl a s. Rapid light curves exhibited classic photoinhibition at high irradiances: Vanda sp is a shade plant. Photosynthetic kinetics was strongly diurnal with minimal E and ETR in the early morning, reaching a maximum at midday and decreasing in the afternoon. The aerial roots were normally photosynthetically dormant but rapidly activated when wet (homiochlorophyllous) then becoming dormant again after drying. Wet roots deliberately incubated under moist conditions had photosynthetic light curves comparable to leaves (Y ≈0.332, Y½ = ≈ 78.3 ± 27.8 μmol photons m s, E ≈ 278 μmol photons m s and ETR ≈ 317 ± 86.9 μmol eg Chl a s): wetting for only 15 min activated photosynthesis. Leaves showed a small degree of diurnal cycling of titratable acid but acid was accumulated in the early morning, not at night, this is a type of CAM-cycling. Titratable acid was low at sunrise (≈ 54.1 μmol Hg FW), but increased until about 9 a.m. (≈ 137 μmol Hg FW) and then gradually decreased over the course of the day.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2020.153187DOI Listing

Publication Analysis

Top Keywords

photosynthetic electron
8
electron transport
8
8
μmol
8
μmol photon
8
μmol chl
8
light curves
8
early morning
8
278 μmol
8
μmol photons
8

Similar Publications

The WRKY70 transcription factor (TF) was reported to play an important role in the salt stress response mechanism of in our previous research, and we also produced several overexpression (OEXs) and RNAi suppression (REXs) × lines. In order to further compare the photosynthetic and physiological characteristics of NT (non-transgenic line) and transgenic lines under salt stress, the dynamic phenotypic change, Na and K content in leaf and root tissues, superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) content, chlorophyll content (Chl), photosynthesis parameters (net photosynthetic rate, P; stomatal conductance, Gs; intercellular CO concentration, C; transpiration rate, T), chlorophyll fluorescence parameters (electron transport rate, ETR; maximum photochemical efficiency of photosystem II (PSII), F/F; actual efficiency of PSII, Φ; photochemical quenching coefficient, q; non-photochemical quenching, NPQ; the photosynthetic light-response curves of Φ and ETR) and RNA-seq of NT, OEX and REX lines were detected and analyzed. The phenotypic observation, MDA content and Chl detection results indicate that the stress damage of REXs was less severe than that of NT and OEX lines under salt stress.

View Article and Find Full Text PDF

(), a significant ornamental plant species, is adversely affected by the severe soil heavy metal pollution resulting from rapid industrialization, particularly in terms of its growth environment. Cadmium (Cd), a representative heavy metal pollutant, poses a significant threat to plant growth and photosynthetic physiology. Despite the importance of understanding Cd stress resistance in rhododendrons, research in this area is limited.

View Article and Find Full Text PDF

Search of Reflectance Indices for Estimating Photosynthetic Activity of Wheat Plants Under Drought Stress.

Plants (Basel)

December 2024

Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia.

Global climate change and the associated increasing impact of droughts on crops challenges researchers to rapidly assess plant health on a large scale. Photosynthetic activity is one of the key physiological parameters related to future crop yield. The present study focuses on the search for reflectance parameters for rapid screening of wheat genotypes with respect to photosynthetic activity under drought conditions.

View Article and Find Full Text PDF

Exogenous 2,4-Epibrassinolide Alleviates Alkaline Stress in Cucumber by Modulating Photosynthetic Performance.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Brassinosteroids (BRs) are recognized for their ability to enhance plant salt tolerance. While considerable research has focused on their effects under neutral salt conditions, the mechanisms through which BRs regulate photosynthesis under alkaline salt stress are less well understood. This study investigates these mechanisms, examining plant growth, photosynthetic electron transport, gas exchange parameters, Calvin cycle dynamics, and the expression of key antioxidant and Calvin cycle genes under alkaline stress conditions induced by NaHCO.

View Article and Find Full Text PDF

The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO concentration (). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency under elevated CO. In this study, we experimentally investigated the influence of elevated CO (from 400 to 800 μmol mol) on photosynthetic induction dynamics and its associated limitation components in two broadleaved tree species, and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!