Coral reefs are formed by living polyps, and understanding the dynamic processes behind the reefs is crucial for marine ecosystem restoration. However, these processes are still unclear because the growth and budding patterns of living polyps are poorly known. Here, we investigate the growth pattern of a widely distributed reef-building coral Pocillopora damicornis from Xisha Islands using high-resolution computed tomography. We examine the corallites in a single corallum of the species in detail, to interpret the budding, growth, and distribution pattern of the polyps, to reconstruct the growth pattern of this important reef-building species. Our results reveal a three-stage growth pattern of P. damicornis, based on different growth bundles that are secreted by polyps along the dichotomous growth axes of the corallites. Our work on the three-dimensional reconstruction of calice and inter-septal space structure of P. damicornis sheds lights on its reef-building processes by reconstructing the budding patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276440 | PMC |
http://dx.doi.org/10.1016/j.isci.2020.101069 | DOI Listing |
J Youth Adolesc
January 2025
Research Center of Adolescent Psychology and Behavior, School of Education, Guangzhou University, Guangzhou, China.
Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).
View Article and Find Full Text PDFDev Growth Differ
January 2025
Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan.
The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
Patients with Noonan syndrome (NS) are born with normal or slightly lower body length and weight compared to the normal ranges. However, their height gradually falls behind that of the general population, leading to growth retardation and delayed puberty. In China, the incidence of short stature in patients with NS is approximately 65%.
View Article and Find Full Text PDFAm J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!