Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper we propose BVAR-connect, a variational inference approach to a Bayesian multi-subject vector autoregressive (VAR) model for inference on effective brain connectivity based on resting-state functional MRI data. The modeling framework uses a Bayesian variable selection approach that flexibly integrates multi-modal data, in particular structural diffusion tensor imaging (DTI) data, into the prior construction. The variational inference approach we develop allows scalability of the methods and results in the ability to estimate subject- and group-level brain connectivity networks over whole-brain parcellations of the data. We provide a brief description of a user-friendly MATLAB GUI released for public use. We assess performance on simulated data, where we show that the proposed inference method can achieve comparable accuracy to the sampling-based Markov Chain Monte Carlo approach but at a much lower computational cost. We also address the case of subject groups with imbalanced sample sizes. Finally, we illustrate the methods on resting-state functional MRI and structural DTI data on children with a history of traumatic injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12021-020-09472-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!