This study experimentally analyses the binding characteristics of analytes mixed in liquid samples flowing along a micro-channel to the receptor fixed on the wall of the micro-channel to provide design tools and data for a microfluidic-based biosensor. The binding or detection characteristics are analyzed experimentally by counting the number of analytes bound to the receptor, with sample analyte concentration, sample flow rate, and the position of the receptor along the micro-channel length as the main variables. A mathematical model is also proposed to predict the number of analytes transported and bound to the receptor based on a probability density function for Brownian motion. The coefficient in the mathematical model is obtained by using a dimensionless mathematical model and the experimental results. The coefficient remains valid for all different conditions of the sample analyte concentration, flow rate, and the position of the receptor, which implies the possibility of deriving a generalized model. Based on the mathematical model derived from mathematical and experimental analysis on the detection characteristics of the microfluidic-based biosensor depending on previously mentioned variables and the height of the micro-channel, this study suggests a design for a microfluidic-based biosensor by predicting the binding efficiency according to the channel height. The results show the binding efficiency increases as the flow rate decreases and as the receptor is placed closer to the sample-injecting inlet, but is unaffected by sample concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346006 | PMC |
http://dx.doi.org/10.3390/mi11060570 | DOI Listing |
Neurochem Res
January 2025
Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Chemistry, Chulalongkorn University, Bangkok, Thailand.
The accumulation pattern of some inorganic pollutants in quarry sites around Ogun State was modeled using a Fuzzy comprehensive assessment (FCA). Potentially toxic elements (PTEs) and naturally occurring radionuclides materials (NORMs) were assessed from soil samples collected from ten quarry sites in three districts (Odeda, Ajebo, and Ijebu Ode) in Ogun State. Three (3) NORMs ( K, U, Th) were assessed using gamma spectrometer with a NaI detector while ten (10) PTEs (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by digestion method using Inductively coupled plasma optical emission spectrophotometer.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.
The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
The Effective Fragment Potential (EFP) method, a polarizable quantum mechanics-based force field for describing non-covalent interactions, is utilized to calculate protein-ligand interactions in seven inactive cyclin-dependent kinase 2-ligand complexes, employing structural data from molecular dynamics simulations to assess dynamic and solvent effects. Our results reveal high correlations between experimental binding affinities and EFP interaction energies across all the structural data considered. Using representative structures found by clustering analysis and excluding water molecules yields the highest correlation (R2 of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!