Facile and scalable synthesis of silicon nanowires from waste rice husk silica by the molten salt process.

J Hazard Mater

Department of Chemical Engineering, Chungbuk National University, 1 Chungdea-ro, Seowon-gu, Choengju 28644, Republic of Korea. Electronic address:

Published: November 2020

Designing nanostructured silicon, such as in the form of nanoparticles, wires, and porous structures, for high-performance Li-ion electrodes, has progressed significantly. These approaches have largely overcome the capacity fading of silicon electrodes from volume expansion during lithiation/de-lithiation. However, they involve high costs, complex processes, and hazardous precursors. Herein, we propose an electrochemical fabrication of silicon nanowires from waste rice husks via a molten salt process based on electrodeoxidation. The addition of NiO as an electric conductor improved the production efficiency and created pores in the nanowires after washing. The electrically produced high-purity silicon yielded high capacity, and the nanowires provided sufficient free volume to accommodate silicon electrode expansion, resulting in improved cycle life. The converted silicon nanowires from the molten salt process will help develop sustainable energy storage materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122949DOI Listing

Publication Analysis

Top Keywords

silicon nanowires
12
molten salt
12
salt process
12
nanowires waste
8
waste rice
8
silicon
7
nanowires
5
facile scalable
4
scalable synthesis
4
synthesis silicon
4

Similar Publications

Capillary condensation-driven growth of perovskite nanowire arrays for multi-functional photodetector.

Light Sci Appl

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China.

Metal-halide perovskite nanowire array photodetectors based on the solution method are valuable in the field of polarized light detection because of their unique one-dimensional array structure and excellent photoelectric performance. However, the limited wettability of liquids poses challenges for achieving large-scale and high-quality perovskite nanowire arrays. To address this issue, we develop a facile method utilizing capillary condensation to grow high-quality centimeter-scale perovskite nanowire arrays.

View Article and Find Full Text PDF

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

Step-necking growth of silicon nanowire channels for high performance field effect transistors.

Nat Commun

January 2025

School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, China.

Ultrathin silicon nanowires (diameter <30 nm) with strong electrostatic control are ideal quasi-1D channel materials for high-performance field effect transistors, while a short channel is desirable to enhance driving current. Typically, the patterning of such delicate channels relies on high-precision lithography, which is not applicable for large area electronics. In this work, we demonstrate that ultrathin and short silicon nanowires channels can be created through a local-curvature-modulated catalytic growth, where a planar silicon nanowires is directed to jump over a crossing step.

View Article and Find Full Text PDF

This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.

View Article and Find Full Text PDF

The development of an efficient and durable photoelectrode is critical for achieving large-scale applications in photoelectrochemical water splitting. Here, we report a unique photoelectrode composed of reconfigured gallium nitride nanowire-on-silicon wafer loaded with Au nanoparticles as cocatalyst that achieved an impressive applied bias photon-to-current efficiency of 10.36% under AM 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!