Mechanisms involved in the unbalanced redox homeostasis in osteoblastic cellular model of Alkaptonuria.

Arch Biochem Biophys

Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy; Dept. of Food and Nutrition, Kyung Hee University, 02447, Seoul, South Korea. Electronic address:

Published: September 2020

Alkaptonuria (AKU) is a rare metabolic disease correlated with the deficiency of homogentisate 1,2-dioxygenase and leading to an accumulation of the metabolite homogentisic acid (HGA) which can be subjected to oxidation and polymerization reactions. These events are considered a trigger for the induction of oxidative stress in AKU but, despite the large description of an altered redox status, the underlying pathogenetic processes are still unstudied. In the present study, we investigated the molecular mechanisms responsible for the oxidative damage present in an osteoblast-based cellular model of AKU. Bone, in fact, is largely affected in AKU patients: severe osteoclastic resorption, osteoporosis, even for pediatric cases, and an altered rate of remodeling biomarkers have been reported. In our AKU osteoblast cell model, we found a clear altered redox homeostasis, determined by elevated hydrogen peroxide (HO) levels and 4HNE protein adducts formation. These findings were correlated with increased NADPH oxidase (NOX) activity and altered mitochondrial respiration. In addition, we observed a decreased activity of superoxide dismutase (SOD) and reduced levels of thioredoxin (TRX) that parallel the decreased Nrf2-DNA binding. Overall, our results reveal that HGA is able to alter the cellular redox homeostasis by modulating the endogenous ROS production via NOX activation and mitochondrial dysfunctions and impair the cellular response mechanism. These findings can be useful for understanding the pathophysiology of AKU, not yet well studied in bones, but which is an important source of comorbidities that affect the life quality of the patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2020.108416DOI Listing

Publication Analysis

Top Keywords

redox homeostasis
12
cellular model
8
altered redox
8
aku
6
mechanisms involved
4
involved unbalanced
4
redox
4
unbalanced redox
4
homeostasis osteoblastic
4
cellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!