Active non-muscle myosin II (NMII) enables migratory cell polarization and controls dynamic cellular processes, such as focal adhesion formation and turnover and cell division. Filament assembly and force generation depend on NMII activation through the phosphorylation of Ser19 of the regulatory light chain (RLC). Here, we identify amino acid Tyr (Y) 155 of the RLC as a novel regulatory site that spatially controls NMII function. We show that Y155 is phosphorylated in vitro by the Tyr kinase domain of epidermal growth factor (EGF) receptor. In cells, phosphorylation of Y155, or its phospho-mimetic mutation (Glu), prevents the interaction of RLC with the myosin heavy chain (MHCII) to form functional NMII units. Conversely, Y155 mutation to a structurally similar but non-phosphorylatable amino acid (Phe) restores the more dynamic cellular functions of NMII, such as myosin filament formation and nascent adhesion assembly, but not those requiring stable actomyosin bundles, e.g., focal adhesion elongation or migratory front-back polarization. In live cells, phospho-Y155 RLC is prominently featured in protrusions, where it prevents NMII assembly. Our data indicate that Y155 phosphorylation constitutes a novel regulatory mechanism that contributes to the compartmentalization of NMII assembly and function in live cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343590 | PMC |
http://dx.doi.org/10.1016/j.cub.2020.04.057 | DOI Listing |
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
Background: Osteoporosis (OP) is a skeletal condition characterized by increased susceptibility to fractures. Programmed cell death (PCD) is the orderly process of cells ending their own life that has not been thoroughly explored in relation to OP.
Objective: This study is to investigate PCD-related genes in OP, shedding light on potential mechanisms underlying the disease.
Nat Commun
January 2025
Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
N-methyladenosine (mA) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that mA methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:
Background: Nitroxyl (HNO) is an emerging signaling molecule that plays a significant regulatory role in various aspects of plant biology, including stress responses and developmental processes. However, understanding the precise actions of HNO in plants has been challenging due to the absence of highly sensitive and real-time in situ monitoring tools. Consequently, it is crucial to develop effective and accurate detection methods for HNO.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China. Electronic address:
Monochamus saltuarius is an important vector of pinewood nematode in Eurasia with a high reproductive capacity. Endocrine hormones play a key role in insect reproduction. Understanding the mechanism of internal regulation can provide targets for pest control.
View Article and Find Full Text PDFDiabetes
January 2025
Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, US.
Adipocyte hypertrophy significantly contributes to insulin resistance and metabolic dysfunction. Our previous research established JMJD8 as a mediator of insulin resistance, noting its role in promoting adipocyte hypertrophy within an autonomous adipocyte context. Nevertheless, the precise mechanisms underlying this phenomenon remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!