The present study reports profiling of the elevated carbon dioxide (CO2) concentration responsive global transcriptome in chickpea, along with a combinatorial approach for exploring interlinks between physiological and transcriptional changes, important for the climate change scenario. Various physiological parameters were recorded in two chickpea cultivars (JG 11 and KAK 2) grown in open top chambers under ambient [380 parts per million (ppm)] and two stressed/elevated CO2 concentrations (550 and 700 ppm), at different stages of plant growth. The elevated CO2 concentrations altered shoot and root length, nodulation (number of nodules), total chlorophyll content and nitrogen balance index, significantly. RNA-Seq from 12 tissues representing vegetative and reproductive growth stages of both cultivars under ambient and elevated CO2 concentrations identified 18,644 differentially expressed genes including 9,687 transcription factors (TF). The differential regulations in genes, gene networks and quantitative real-time polymerase chain reaction (qRT-PCR) -derived expression dynamics of stress-responsive TFs were observed in both cultivars studied. A total of 138 pathways, mainly involved in sugar/starch metabolism, chlorophyll and secondary metabolites biosynthesis, deciphered the crosstalk operating behind the responses of chickpea to elevated CO2 concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434580 | PMC |
http://dx.doi.org/10.1093/pcp/pcaa077 | DOI Listing |
Discov Med (Cham)
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada.
Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Urology, Beijing TianTan Hospital, Capital Medical University, No. 119 South 4 Ring West Road, Fengtai District, 100070, Beijing, China.
Background: Although pentatricopeptide repeat domain 1 (PTCD1) has been found to modulate mitochondrial metabolic and oxidative phosphorylation, its contribution in the growth of clear cell renal cell carcinoma (ccRCC) remains unknown.
Methods: The Cancer Genome Atlas (TCGA) dataset was utilized to examine the transcriptional alterations, patient characteristics, clinical outcomes, as well as pathway activation of PTCD1. The Weighted Gene Co-expression Network Analysis (WGCNA) was performed to investigate potential genes that associated with PTCD1.
Plant Physiol Biochem
January 2025
School of Engineering, Anhui Agricultural University, Hefei, 230036, China. Electronic address:
In this research, we sought to investigate how high temperature, salinity, and CO affect endogenous phytohormones, photosynthesis, and redox homeostasis in Caragana korshinskii Kom (C. korshinskii) leaves, as well as to comprehensively evaluate the plant's physiological response to multiple environmental stressors. The elevated temperature (e[T]), elevated Na (e[Na]), and elevated temperature and Na (e[T-Na]) treatments increased abscisic acid (ABA) and reduced zeatin-riboside (ZR), indole-3-acetic acid (IAA), and gibberellic acid (GA).
View Article and Find Full Text PDFExp Physiol
January 2025
Department of Biology, Mount Royal University, Calgary, AB, Canada.
Cerebrovascular regulation is critically dependent upon the arterial partial pressure of carbon dioxide ( ), owing to its effect on cerebral blood flow, tissue , tissue proton concentration, cerebral metabolism and cognitive and neuronal function. In normal environments and in the absence of pathology, at least over acute time frames, hypercapnia is usually managed readily via the respiratory chemoreflex arcs and/or acid-base buffering capacity, such that there is minimal impact on cerebrovascular and neurological function. However, in non-normal environments, such as enclosed spaces, or with pathology, extended exposures to elevations in can be detrimental to cerebral health.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas. 7001 Australia.
Elevated atmospheric CO2 (e[CO2]) often enhances plant photosynthesis and improves water status. However, the effects of e[CO2] vary significantly and are believed to be influenced by water availability. With the future warmer climate expected to increase the frequency and severity of extreme rainfall, the response of plants to e[CO2] under changing precipitation patterns remains uncertain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!