Nitrogen (N) isotopic discrimination (i.e. the difference in natural 15N abundance between the animal proteins and the diet; Δ15N) is known to correlate with N use efficiency (NUE) and feed conversion efficiency (FCE) in ruminants. However, results from the literature are not always consistent across studies, likely due to isotopic discrimination pathways that may differ with the nature of diets. The objective of the present study was to assess at which level, from rumen to tissues, Δ15N originates and becomes related to NUE and FCE in fattening yearling bulls when they are fed two contrasted diets. Twenty-four Charolais yearling bulls were randomly divided into two groups and fed during 8 months, from weaning to slaughter, either 1) a high starch diet based on corn silage supplying a balanced N to energy ratio at the rumen level (starch) or 2) a high fiber diet based on grass silage supplying an excess of rumen degradable N (fiber). All animals were slaughtered and samples of different digestive pools (ruminal, duodenal, ileal and fecal contents), animal tissues (duodenum, liver and muscle), blood and urine were collected for each animal. Ruminal content was further used to isolate liquid-associated bacteria (LAB), protozoa and free ammonia, while plasma proteins were obtained from blood. All samples along with feed were analyzed for their N isotopic composition. For both diets, the digestive contribution (i.e. the N isotopic discrimination occurring before absorption) to the Δ15N observed in animal tissues accounted for 65 ± 11%, leaving only one third to the contribution of post-absorptive metabolism. Concerning the Δ15N in digestive pools, the majority of these changes occurred in the rumen (av. Δ15N = 2.12 ± 0.66‰), with only minor 15N enrichments thereafter (av. Δ15N = 2.24 ± 0.41‰), highlighting the key role of the rumen on N isotopic discrimination. A strong, significant overall relationship (n = 24) between Δ15N and FCE or NUE was found when using any post-absorptive metabolic pool (duodenum, liver, or muscle tissues, or plasma proteins; 0.52 < r < 0.73; P ≤ 0.01), probably as these pools reflect both digestive and post-absorptive metabolic phenomena. Fiber diet compared to starch diet had a lower feed efficiency and promoted higher (P ≤ 0.05) Δ15N values across all post-absorptive metabolic pools and some digestive pools (ruminal, duodenal, and ileal contents). The within-diet relationship (n = 12) between Δ15N and feed efficiency was not as strong and consistent as the overall relationship, with contrasted responses between the two diets for specific pools (diet x pool interaction; P ≤ 0.01). Our results highlight the contrasted use of N at the rumen level between the two experimental diets and suggests the need for different equations to predict FCE or NUE from Δ15N according to the type of diet. In conclusion, rumen digestion and associated microbial activity can play an important role on N isotopic discrimination so rumen effect related to diet may interfere with the relationship between Δ15N and feed efficiency in fattening yearling bulls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274422 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234344 | PLOS |
Anal Chim Acta
February 2025
Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Marti i Franqués, 1-11, ES-08028, Barcelona, Spain; Serra-Húnter Programme, Generalitat de Catalunya, Barcelona, Spain; Institut de Recerca de l'Aigua, University of Barcelona, Spain. Electronic address:
Background: Analyzing mixtures of radionuclides is a complex task. Two situations are the mixtures of Sr with Sr and Sr with plutonium isotopes. The challenge arises in emergency scenarios resulting from accidents where the activity of Sr is over 20 times higher than that of Sr, complicating its quantification and requiring delayed measurements.
View Article and Find Full Text PDFFood Res Int
January 2025
New Hazardous Substances Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Chungcheongbuk-do 28159, Republic of Korea. Electronic address:
Honey is highly vulnerable to food fraud, and there are growing concerns about product authenticity. The commonly used stable carbon isotope ratios in the Calvin (C3) and Hatch-Slack (C4) photosynthesis cycles in plant feed cannot distinguish between beet-sugar-fed honey and natural honey. However, 3-methoxytyramine (3-MT) can be used as specific biomarker for identifying adulteration of beet-sugar-fed honey.
View Article and Find Full Text PDFMicroorganisms
December 2024
Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile.
Food Chem
December 2024
Key Laboratory of Aquatic product, Ministry of Agriculture and Rural affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China.
The amino thiols are key antioxidants in organisms, and their detection in food is of significant importance. This study developed a new stable isotope chemical labelling coupled with ultra-performance liquid chromatography-tandem mass spectrometry method to detect six amino thiols from fish samples. By the proposed method, amino thiols were labeled after liquid extraction using the stable isotope labeling reagents of iodoacetamide (IAM) and D-IAM.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
Distinguishing between Parkinson's disease (PD) and essential tremor (ET) can be challenging sometimes. Although positron emission tomography can confirm PD diagnosis, its application is limited by high cost and exposure to radioactive isotopes. Patients with PD exhibit loss of the dorsal nigral hyperintensity on brain magnetic resonance imaging (MRI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!