Background: Pancreatic stellate cells (PSCs) activation plays a critical role in the development of chronic pancreatitis. Previous studies confirmed that thromboxane A2 receptor (TxA2r) was overexpressed in activated PSCs in rats. The purpose of this study was to investigate the role of TxA2r in the activation of PSCs induced by 8-epi-prostaglandin F2α (8-epi-PGF2α).

Methods: TxA2r expression in both quiescent and activated PSCs was detected by immunocytochemistry and immunoblot assay. Isolated PSCs were treated with 8-epi-PGF2α (10, 10, 10 mol/L) for 48 h, and SQ29548 (10, 10, and 10 mol/L), a TxA2r-specific antagonist for 48 h, respectively, to identify the drug concentration with the best biological effect and the least cytotoxicity. Then isolated PSCs were treated with SQ29548 (10 mol/L) for 2 h, followed by 10 mol/L 8-epi-PGF2α for 48 h. Real-time polymerase chain reaction was performed to detect the messenger RNA (mRNA) levels of α-smooth muscle actin (α-SMA) and collagen I. Comparisons between the groups were performed using Student's t test.

Results: TxA2r was up-regulated in activated PSCs in vitro compared with quiescent PSCs (all P < 0.001). Compared with the control group, different concentrations of 8-epi-PGF2α significantly increased mRNA levels of α-SMA (10 mol/L: 2.23 ± 0.18 vs. 1.00 ± 0.07, t = 10.70, P < 0.001; 10 mol/L: 2.91 ± 0.29 vs. 1.01 ± 0.08, t = 10.83, P < 0.001; 10 mol/L, 1.67 ± 0.07 vs. 1.00 ± 0.08, t = 11.40, P < 0.001) and collagen I (10 mol/L: 2.68 ± 0.09 vs. 1.00 ± 0.07, t = 24.94, P < 0.001; 10 mol/L: 2.12 ± 0.29 vs. 1.01 ± 0.12, t = 6.08, P < 0.001; 10 mol/L: 1.46 ± 0.15 vs. 1.00 ± 0.05, t = 4.93, P = 0.008). However, different concentrations of SQ29548 all significantly reduced the expression of collagen I (10 mol/L: 0.55 ± 0.07 vs. 1.00 ± 0.07, t = 10.47, P < 0.001; 10 mol/L: 0.56 ± 0.10 vs. 1.00 ± 0.07, t = 6.185, P < 0.001; 10 mol/L: 0.27 ± 0.04 vs. 1.00 ± 0.07, t = 15.41, P < 0.001) and α-SMA (10 mol/L: 0.06 ± 0.01 vs. 1.00 ± 0.11, t = 15.17, P < 0.001; 10 mol/L: 0.28 ± 0.03 vs. 1.00 ± 0.11, t = 11.29, P < 0.001; 10 mol/L: 0.14 ± 0.04 vs. 1.00 ± 0.11, t = 12.86, P < 0.001). After being treated with SQ29548 (10 mol/L) and then 8-epi-PGF2α (10 mol/L), the mRNA levels of α-SMA (0.20 ± 0.08 vs. 1.00 ± 0.00, t = 17.46, P < 0.001) and collagen I (0.69 ± 0.13 vs. 1.00 ± 0.00, t = 4.20, P = 0.014) in PSCs were significantly lower than those of the control group.

Conclusions: The results show that 8-epi-PGF2α promoted PSCs activation, while SQ29548 inhibited PSCs activation induced by 8-epi-PGF2α. The result indicated that TxA2r plays an important role during PSC activation and collagen synthesis induced by 8-epi-PGF2αin vitro. This receptor may provide a potential target for more effective antioxidant therapy for pancreatic fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339349PMC
http://dx.doi.org/10.1097/CM9.0000000000000838DOI Listing

Publication Analysis

Top Keywords

activated pscs
12
thromboxane receptor
8
pancreatic stellate
8
stellate cells
8
induced 8-epi-prostaglandin
8
8-epi-prostaglandin f2α
8
pscs
8
isolated pscs
8
pscs treated
8
receptor contributes
4

Similar Publications

Background: Type 2 diabetes (T2D) has become a significant global health threat, yet its precise causes and mechanisms remain unclear. This study aims to identify gene expression patterns specific to T2D pancreatic islet cells and to explore the potential role of pancreatic stellate cells (PSCs) in T2D progression through regulatory networks involving lncRNA-mRNA interactions.

Methods: In this study, we screened for upregulated genes in T2D pancreatic islet samples using bulk sequencing (bulkseq) datasets and mapped these gene expression profiles onto three T2D single-cell RNA sequencing (scRNAseq) datasets.

View Article and Find Full Text PDF

Cdc42 is crucial for the early regulation of hepatic stellate cell activation.

Am J Physiol Cell Physiol

January 2025

Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.

The activation of hepatic stellate cells (HSCs) from a quiescent state is a cause of liver fibrosis and a therapeutic target. HSCs are resident mesenchymal cells located in the space of Disse, exhibiting specialized morphological characteristics such as a stellate shape, large lipid droplets, and direct adhesions to hepatocytes via microprojections called HSC spines. Morphological alterations in HSCs play a crucial role in initiating their activation.

View Article and Find Full Text PDF

Background And Aims: Pancreatic stellate cells (PSCs) are critical mediators in chronic pancreatitis with an undefined role in acute pancreatitis (AP). PSCs consist of a heterogenous group of cells and are considered interchangeable with pancreatic fibroblasts. This study explored the heterogeneous nature of PSCs by characterizing pancreatic collagen-expressing fibroblasts (PCFs) via lineage tracing in mouse normal and AP pancreas and determining the effect of PCF depletion in AP.

View Article and Find Full Text PDF

Deciphering the senescence-based tumoral heterogeneity and characteristics in pancreatic cancer: Results from parallel bulk and single-cell transcriptome data.

IUBMB Life

January 2025

Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China.

The prevalent intra- and intertumoral heterogeneity results in undesirable prognosis and therapy failure of pancreatic cancer, potentially resulting from cellular senescence. Herein, integrated analysis of bulk and single-cell RNA-seq profiling was conducted to characterize senescence-based heterogeneity in pancreatic cancer. Publicly available bulk and single-cell RNA sequencing from pancreatic cancer patients were gathered from TCGA-PAAD, PACA-AU, PACA-CA, and GSE154778 datasets.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic hepatitis B infection (CHB) leads to significant liver fibrosis through inflammation and biochemical changes that activate hepatic stellate cells (HSCs), which are crucial for fibrogenesis.
  • The role of non-coding RNAs (ncRNAs) like microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) is highlighted in regulating gene expression during liver fibrosis in CHB, although many studies focus on other liver disease causes.
  • The review emphasizes the need for further research into ncRNAs as they hold promise for future diagnostic and therapeutic applications in CHB-related liver fibrosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!