Antibody-Directed Synthesis of Catalytic Nanoclusters for Bioanalytical Assays.

ACS Appl Mater Interfaces

Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia San Sebastián 20014, Spain.

Published: July 2020

Synthesis of atomic nanoclusters (NCs) using proteins as a scaffold has attracted great attention. Usually, the synthetic conditions for the synthesis of NCs stabilized with proteins require extreme pH values or temperature. These harsh reaction conditions cause the denaturation of the proteins and end up in the loss of their biological functions. Until now, there are no examples of the use of antibodies as NC stabilizers. In this work, we present the first method for the synthesis of catalytic NCs that uses antibodies for the stabilization of NCs. Anti-BSA IgG was used as a model to demonstrate that it is possible to use an antibody as a scaffold for the synthesis of semiconductor and metallic NCs with catalytic properties. The synthesis of antibodies modified with NCs is carried out under nondenaturing conditions, which do not affect the antibody structure. The resulting antibodies still maintain the affinity for target antigens and protein G. The catalytic properties of the anti-BSA IgG modified with NCs can be used to the quantification of bovine serum albumin (BSA) in a direct sandwich enzyme-linked immunosorbent assay (ELISA).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c05229DOI Listing

Publication Analysis

Top Keywords

synthesis catalytic
8
anti-bsa igg
8
catalytic properties
8
modified ncs
8
ncs
7
synthesis
5
antibody-directed synthesis
4
catalytic
4
catalytic nanoclusters
4
nanoclusters bioanalytical
4

Similar Publications

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Chem Rec

January 2025

Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.

Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.

View Article and Find Full Text PDF

Precise Synthesis of Complex Si-Si Molecular Frameworks.

J Am Chem Soc

January 2025

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

In this Perspective, we highlight the emergence of target-oriented syntheses of complex molecules composed of Si-Si (oligosilanes) rather than C-C bonds. Saturated oligosilanes structurally resemble alkanes with respect to a tetrahedral geometry, a preference for a staggered conformation in linear chains, the ability to form stable small rings, and tetrahedral stereochemistry at asymmetrically functionalized Si centers. There are also critical differences, for example, differences in multiple bonding and the ability to form penta- and hexacoordinated structures, that mean that chemical reactivity and, in particular, rules for stereoselective synthesis do not cleanly translate from carbon to silicon.

View Article and Find Full Text PDF

-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.

View Article and Find Full Text PDF

Efficient oxygen evolution reaction (OER) catalysts with fast kinetics, high efficiency, and stability are essential for scalable green production of hydrogen. The rational design and fabrication of catalysts play a decisive role in their catalytic behavior. This work presents a high-entropy catalyst, FeCoNiCuMo-O, synthesized via carbothermal shock.

View Article and Find Full Text PDF

3-Fluoroneuraminosyl fluorides are invaluable probes for studying the catalytic mechanism of sialidases (neuraminidases), and as sialidase inhibitors. Significantly, when a C-3 equatorial fluorine is installed on a C-4 functionalised N-acylneuraminic acid (Neu)-based template, the compounds are potent and selective inhibitors of both influenza and parainfluenza sialidases, and of virus replication. Typically, the reported syntheses of 3-fluoroneuraminosyl fluorides involve either an enzymatic or a chemical synthesis that have uncontrolled stereoselectivity in the introduction of fluorine at C-3 of Neu and consequently yield a mixture of C-3 ax and C-3 eq fluoro derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!